

Introduction: shape discretization
\square Cellular decompositions (cell complexes)
\square Triangle and tetrahedral meshes (simplicial complexes)
\square Quad and unstructured hexahedral meshes
\square Nested meshes (e.g, quadtrees, hierarchical triangle meshes)

Introduction: applications

\square Computer Graphics

- Computer-Aided Design (CAD)
\square Computer-Aided Engineering (CAE)
- Finite Element AnalysisAnimationScientific visualization
- Geographic Information SystemsMachine learning
-

Introduction: history

- Cell complexes: basis for boundary models of objects in solid modeling systems
- first representation: Winged-Edge data structure [Baumgardt, 1972]
- first representation for shapes with singularities (nonmanifold): Radial-Edge data structure [Weiler, 1989]
- Triangle meshes:
- basis for terrain modeling [Gold, 1977]
- finite elements analysis...
- Tetrahedral meshes:
- representation for volume data in scientific visualization [Cignoni et al., 1994]
- volumetric representation of objects [Paoluzzi et al.,1993]
- finite elements analysis...

Shape topology

Manifold:

- neighborhood of each point is a topological open ball (or half-ball)

Non-manifold:

\square non-manifold joints
\square parts of different dimensionalities

Background: cell complexes

$\square \mathbf{k}$-dimensional cell (\mathbf{k}-cell) σ in the n dimensional Euclidean space E^{n} : a subset ${ }^{\text {A 3-cell }}$ of E^{n} homeomorphic to a closed kdimensional ball
d-dimensional cell complex (cell dcomplex): finite collection of k-cells ($k \leq d$)
 such that

- the intersection of any two non-disjoint cells σ and σ^{\prime} is the union of cells of the complex

Background: simplicial complexes

1-simplex (edge)
2-simplex (triangle)
3-simplex (tetrahedron)
-

k-dimensional Euclidean simplex (k-simplex):

- convex hull of $k+1$ linearly independent points in the n-dimensional Euclidean space $E^{n}(k \leq n)$
\qquad ,
- d-dimensional simplicial complex finite collection of k-simplexes ($k \leq d$) such that
- the intersection of any two simplexes, if not empty, is a simplex belonging to both of them

A simplicial 2- complex

no

no

Background: topological relations

- Ingredients for defining data structures for cell and simplicial complexes:
- Incidence (boundary and co-boundary) relations: relations between cells of different dimensions
- Adjacency relations: relations between k-cells of the same dimension though ($k-1$)-dimensional cells

Incidence boundary relation between 2 -simplex and its bounding 1 -simplexes

Incidence co-boundary relation between a 1 cell and three 2-cells

Adjacency relation between two 3-cells sharing a face (2-cell)

Operations to be supported

Topological connectivity queries for retrieving

- cells on the boundary of a given cell
- co-boundary of a cell: cells bounded by a given one
\square cells adjacent to another one along a lower dimensional cell

Updates

- e.g., vertex insertion/deletion; edge contraction;
 edge swaps; Euler operators; simplex collapse

Requirements for data structures

Compactness
\square Efficient support to

- topological connectivity queries
\square updatesFlexibilityEase of use
\square Scalability to manifolds (for non-manifold data structures)

Outline

11
Taxonomy of data structuresReview of data structures for manifold complexesApproaches to non-manifold shape modelingData structures for simplicial complexes in arbitrary dimensions

The Mangrove library
Towards a localized approach: the PR-star octree

Data structures - Taxonomy

\square Discretization of the shape \square cell versus simplicial complexes

Topology of the shape
\square manifold versus non-manifold

Dimension of the shape and of its discretization
\square dimension-specific data structures

- dimension-independent data structures

Data structures - Taxonomy (2)

Entities encoded\square all the cells (e.g., in a triangle mesh: all the triangles, edges and vertices)

- a subset of the cells (e.g, in a triangle mesh: only triangles and vertices)

\square Granularity

- flat data structures: a single mesh discretizing the shape
- multi-resolution (Level-Of-Detail (LOD)) data structures:
- a collection of meshes discretizing the same shape

Data structures - Taxonomy (3)

\square Explicit versus implicit representationsExplicit data structures:

- a subset of the cells
- topological relations among cells (explicit)

Implicit data structures:

- topological relations are encoded indirectly as tuples of cells in the same relation

Entities: tetrahedra and vertices

Encoded relations:
Tetrahedron-Vertex and Tetrahedron-Tetrahedron

(v, e, f): triple of vertex v edge e and face f on the surface of a hollow cube

	Data structures - Taxonomy (3)	
14		
	Explicit versus implicit representations Explicit data structures: a subset of the cells topological relations among cells (explicit) Implicit data structures: - topological relations are encoded indirectly as tuples of cells in the same relation edge e and face f on the surface of a hollow cube	Entities: tetrahedra and vertices Encoded relations: Tetrahedron-Vertex and Tetrahedron-Tetrahedron

2D Cell complexes - manifold

\square Cells: vertices, edges and faces - an edge is shared by at most two faces

\square Most common: edge-based representations
\square Edge plus its local connectivity:

- Edge-Vertex relation
- Edge-Face relation
- Partial Edge-Edge relation

Partial Edge-Edge Relations

- Winged-edge: four edges in $\mathrm{R}_{1,1}(\mathrm{e})$

- Half-Edge:
- edge e consists of two halfedges he and he"
- two edges in $R_{1,1}$ (e) associated with he
- other two associated with he'

2D cell complexes - manifold (2)

Edge-based representations- Winged-Edge [Baumgart, 1972]; Half-Edge [Mantyla, 1983];

Quad-edge [Guibas et al, 1985], etc.

Half-edge implementation (public domain)

- Mantyla's book (1988)
- OpenMesh Library (Computer Graphics Group, RWTH Aachen).
- Computational Geometry Algorithms Library (CGAL)

2D Simplicial complexes - manifold Triangle meshes

Edge-based data structures

- For cell complexes: vertices, edges and triangles explicitly encoded

Triangle-based data structures

- Only vertices and triangles explicitly encoded
- Indexed with Adjacencies (IA) [Gold, 1977]; Corner table [Rossignac et al., 2001]
- 6.5 integer references per triangle
- Compact representations (for fixed-connectivity meshes)
- SOT, LR, SQuad [Gurung et al., 2010 and 2011]
- from $\mathbf{3}$ to $\mathbf{1 . 0 8}$ (on average) references per triangleEdge-based data structures about 1.8 times IA

3D Simplicial complexes - manifold Tetrahedral meshes

Data structures representing all entities

- Vertices, edges, faces and tetrahedra encoded
- e.g., Facet-Edge [Dobkin and Lazlo, 1987], Triangle-Edge [Natarajan et al., 2004]

Tetrahedron-based data structures

- Only vertices and tetrahedra encoded
- Indexed with Adjacencies (IA) [Nielson, 1997, Paoluzzi et al, 1993], CHF [Lage et al., 2005]
- 8.5/8 references per tetrahedron
- Compact representation
- for fixed-connectivity meshes

■ 4 references per tetrahedron - SOT [Gurung et al, 2010]

Indexed triangle/tetrahedral data structures

Array of vertices V

\square Each vertex v_{i} encodes a position in Euclidean space and possibly other attributes

Array of triangles/tetrahedra T

- Each triangle/ tetrahedron t_{j} encodes the index
 in V of its vertices and possibly other attributes

For tetrahedral meshes

IA data structure:

Indexed data structure with Adjacencies
\square Array of vertices V

- Encodes position of each vertex
- Encodes a single incident triangle/tetrahedron in T
\square Array of triangles/tetrahedra T
- Encodes indices of three/four vertices in V
- Encodes indices of three/ four adjacent triangles/ tetrahedra in T

For tetrahedral meshes

$$
v_{i}=\left\{x, y, z, i_{t}\right\}
$$

$$
t_{i}=\left\{\begin{array}{l}
i_{v 1}, i_{v 2}, i_{v 3}, i_{v 4} \\
i_{t 1}, \\
i_{t 2},
\end{array} i_{t 3}, i_{t 4}\right\}
$$

Representing non-manifolds

\square Combinatorial d-manifold [without boundary]: pure complex in which the link of each k-cell is homemorphic to a triangulation of ($d-k-1$)-sphere

- star of a cell: collection of all cells incident in it

■ link: boundary of the star

\square The class of d-manifolds is not decidable for $d>=6$; it is an open problem for $d=5$
A weaker definition of singularity related to the connected components of the link of a cell

Representing non-manifolds

Cell complexes

Extensions of edge-based data

 structures for manifolds- Radial Edge [Weiler, 1989]
- Partial Entity [Lee and Lee, 2001]
- Tri-cyclic Cusp data structure [Gursoz et. al, 1990]
- Coupling Entities data structure [Yamaguchi and Kimura, 1995]
- Extended maps [Cazier and Kraemer, 2010]

Decomposition into manifold components

- splitting at non-manifold vertices and edges
- [Desaulniers and Stewart, 1992; Falcideno and Ratto, 1992; Rossignac and Cardoze, 1999; Pesco et al., 2004]

Decomposition approach to non-manifolds

Theoretical issues

- Decomposition into manifolds is not feasible in higher dimensions
- Even in 3D: we cannot decompose into manifolds parts without cutting at a manifold face

Decomposition into nearly manifold

components [DeFloriani, Morando, Puppo, 2003; Hui et al., 2006]

- generated by splitting a simplicial complex only at simplexes corresponding to singularities

- unique
- valid in arbitrary dimensions

Decomposition approach (2)

Connectivity among the components \square through a hypergraph
\square Triangle- or tetrahedron-based data structures for the components

- Double-Level Decomposition (DLD) [Hui et al., 2006]
when using the IA data structure
- Compact
- Efficient topological queries
- Difficult to update
- Suitable for extending compact representations to "non-manifolds"

Cell tuple data structure [Brisson 1998]

\square Implicit representation for manifold cell complexes
\square Basic elements: tuples of cells and switch operators between tuples
\square Cell-tuple: $(d+1)$-tuple of cells $\left(\sigma_{0}, \ldots, \sigma_{i}, \ldots, \sigma_{d}\right)$ such that - σ_{i} is an i-cell,

- σ_{i} belongs to the boundary of $\sigma_{i+1}(I=0,1, \ldots, d-1)$

A cell-tuple for a two-dimensional ($d=2$) complex: $\left(v_{1}, e_{1}, f\right)$

The Cell-tuple Data Structure: an

Example for a 2-Complex

$\square \quad$ The cell-tuple data structure for the 2-complex shown in the picture consists of 24 cell-tuples:

- Each cell tuple consists of a vertex, edge and face
- An edge appears in four tuples (since it is common to two faces and has two extreme vertices)

Cell-tuple Data Structure:
 Switch Operator

Cell-tuple data structure as a graph

- Cell tuples are represented as nodes of a labeled graph
\square Each are of the graph represents a switch operator
\square The label ($\equiv 0,1$ or 2 in the 2D case) of an arc:
- index of the switch operator described by the arc

\square Verbose representation
- All topological relations can be retrieved in optimal time

Retrieving Topological Relations: an Example

- Retrieve boundary relation $\mathrm{R}_{2,0}$ (Face-Vertex relation) for a face σ
$\square \quad$ Find a tuple containing σ
- Let this be (v, e, σ), apply alternatively:
- \quad switch $_{0}(v, e, \sigma)=(v, e, \sigma)$, which gives the other vertex of e
$\square \quad$ switch $(v, e, \sigma)=\left(v, e^{\prime}, \sigma\right)$, which gives the other edge sharing vertex v and face σ
- Time complexity: linear in the number of vertices face σ

Example: retrieve $\mathrm{R}_{20}(\mathrm{~B})$ (Face-Vertex) starting from ($5, \mathrm{a}, \mathrm{B}$)

Cell-tuple Data Structure as a Graph

- Cell fuples are represented as nodes of a labeled graph
- Each are of the graph represents a switch operator
- In a 2-complex:
- for each tuple we have three switch operators
- \# tuples (nodes) = $\mathbf{4}^{*} \#$ edges
- \# switch operators (ares) $\equiv 6^{*}$ \# edges

$\square \quad$ It tends to be a verbose representation
- All topological relations can be retrieved in optimal time by applying sequences of switch operators, given a starting tuple

Generalized Maps (G-Maps)

[Lienhardt, 1988; 1994]

Purely combinatorial objects
\square Based on the concept of dart (corresponding to celltuple)Each dart is formed by $\mathrm{N}+1$ involutions (very similar to switch operators)
\square Domain: quasi-manifold complexes, a subclass of pseudo-manifoldsVery elegant implementations [Levy and Mallet, 1999]

Incidence Graph [Edelsbrunner, 1987]

- General: for arbitrary cell complexes
- Implementation of Hasse diagram
\square All cells explicit encoded
\square Immediate boundary ($R_{p p-1}$) and co-boundary ($R_{p p+1}$) relations encoded for each p-cell

Incidence Graph: Retrieving a Co-boundary Relation

Retrieving R $_{0,2}\left(v_{1}\right)$ (Vertex-Face relation):
all faces incident at V_{1}

Incidence graph and implicit data structures

Domain

- IG: arbitrary cell complexes
- Cell-tuple: manifold cell complexes
- G-maps: quasi-manifold complexes
\square Cell-tuples/ G-maps
- paths in the incidence graph
- ordered modelsEncoding
- Cell tuples/G-maps as nodes of a labeled graph
- Arcs of the graph represent switch operators (dart for G-maps)
- G-maps more verbose than IG: IG/G-Maps $\sim 50 \%$ in 2D; IG/G-Maps ~18\% in 3D

Data structures for simplicial complexes

Common requirements

- Domain: abstract simplicial complexes of arbitrary dimension
\square Dimension-independent design and implementation
- Scalable to manifolds
- Efficient support to both connectivity queries and updates

Conflicting requirements

- Explicit encoding of all simplices
- Compactness

Incidence Simplicial (IS) data structure [DeFloriani et al., 2011]

\square All simplices are explicitly encoded
\square Simplified version of the Incidence Graph (IG) Topological connectivity
\square relation between an i -simplex and the ($\mathrm{i}-1$)-simplices on its boundary (as IG)

\square minimal encoding of the local neighborhood (coboundary) of a simplex

IS data structure

an example for simplicial 3-complexes

Boundary relations:

- Tetrahedron-Triangle
- Triangle-Edge
- Edge-Vertex

\square Co-boundary relations as partial relations:
- Vertex-Edge: one edge for each connected component of the link

Edge-Triangle: one triangle for each connected component of the link

- Triangle-Tetrahedron: one tetrahedron for each connected component of the link

Generalized IA (IA*) data structure

[Canino et al., 2011]
\square Only vertices and top simplexes encoded

- Top simplexes: not on the boundary of any other simplex (e.g., in 3D: tetrahedra, dangling triangles and edges)Adjacency-based representation
- Extension of IA data structure
\square Topological connectivity
- boundary relations from a top simplex and its bounding vertices
- adjacency relations among top simplexes
\square minimal encoding of the star of each vertex

IA* data structure:
an example for 3-complexes
\square Only vertices and top simplexes (tetrahedra, dangling triangles and edges)
\square Vertex connectivity for top simplexes ($R_{k 0}$ relations)
Tetrahedron-Tetrahedron relation
\square Triangle-Triangle and Edge-Edge relations for dangling triangles and edgesOne simplex for each cluster of k-dimensional simplexes incident at a vertex

IS vs IA* data structure

Extended to quad and hexahedral meshes and moreStorage cost\square IS: more compact than manifold edge-based (50-70\%) and facet-based (40-60\%) data structures

- IA* more compact than IS (see next slide)
-IA*: 5\% more compact than dimension-specific IAs
\square Topological connectivity queries
- IA* more efficient than IS on boundary (30% less) and vertex-based co-boundary queries (35% less)

Comparison on storage costs (2)

Ratio among the Storage Costs of the IG, IS, and IA* data structures

The Mangrove library

\square Rapid prototyping of data structures for simplicial and cell complexes

- flexible: graph-based representation (mangrove) for any data structure
- easy to use: simple and concise set of primitives supported
\square Multi-platform, written in C++
\square Implementation of five data structures
- IS and IA* data structures
- Incidence Graph (IG)
- Two data structures specific for 2D and 3D simplicial complexes in 3D space
\square Released as GPLv3 software at http://mangrovetds.sourceforge.net

The Mangrove library (2)

Current version:

- arbitrary cell complexes (IG and IS data structures)
- IS and IA* for quad and hexahedral meshes
- Based on fixed cardinality of boundary relations

Topological editing operators: under development - homology-preserving and homology-modifying Euler operators in arbitrary dimensions for cell complexes

- Operators for simplicial complexes:
- Stellar operators
- Face collapse
- Edge contraction

High-dimensional simplicial complexes Data structures

Simplex tree [Boissonnat and Maria, 201 2]

- For abstract simplicial complexes of any dimension
- All simplexes explicitly stored in a trie
- Applications: construction of flag complexes and homology computation
\square Tidy set [Zomorodian, 2010]
- For simplicial sets (obtained from abstract simplicial complexes)
- Dual graph representation of the complex:

■ nodes $=$ top simplexes ; arcs $=$ their intersection

- Application: computing homology of flag complexes

Blocker data structure [Attali et al., 2011]

- Simplicial complexes close to clique complexes
- Representation: 1-skeleton plus inclusion minimal simplexes

Towards localized data structures

Bottleneck on future exascale computing shifts for processing costs to memory access costsMoving to multi-core architectures
\square Limiting factors: per-core memory size and bandwithRequirements are still:
\square random-access traversal operators

- efficient updates

A spatio-topological approach

The PR-star octree [Weiss et al., 2011]
\square "Topology through space"

- topological connectivity queries through a spatial index on embedding space

\square Efficient reconstruction of topological
relations
- optimal application dependent local data structures to be generated at runtime
\square Our approach (PR-star Octree)

\square tetrahedral meshes
\square generalizes to complexes in arbitrary dimensions

The PR-star octree

Strategy

- augment PR(Point-Region) octree (index on the vertices of the mesh) with the tetrahedra incident at its vertices

Data structure

\square global indexed representation of the mesh (without adjacencies)
\square an octree node indexes a contiguous range of vertices and tetrahedra

The PR-star octree Storage costs

Topological overhead: 19\% wrt compact indexed representation with adjacencies (IA)
Total cost: PR-star is 62% of IA

Applications of PR-star octree General Strategy

\square Iterate through octree nodesFor each leaf octree node
\square Step 1: Build application-dependent local data structure

- Step 2: Process mesh locally
\square Step 3: Discard local data structure

Cost of building data structures is amortized over multiple local operations

Applications of PR-star octree

- Computing the star of a vertex:
- ~ 70\% faster with PR-star than with IA
- cost amortized over a large portion of the mesh
- Mesh simplification (through edge contraction)
- similar simplification results in around the same amount of time as IA
- 1% of the memory
- Successfully applied to compute discrete Morse complexes on tetrahedral meshes [Weiss et al.,
Eurovis2013] - 50\% times faster than IA for Morse gradient computation

Experiments performed on irregular and semi-regular data sets containing up to 14 Millions of tetrahedra

