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EFFICIENT AND EFFECTIVE
REPRESENTATIONS FOR SHAPE
MODELING AND ANALYSIS

Introduction: shape discretization

0 Cellular decompositions (cell complexes)

0 Triangle and tetrahedral meshes
(simplicial complexes)

0 Quad and unstructured hexahedral
meshes

0 Nested meshes (e.g, quadtrees,
hierarchical triangle meshes)




Introduction: applications

Computer Graphics
Computer-Aided Design (CAD)

Computer-Aided Engineering (CAE)
Finite Element Analysis

Animation

Scientific visualization
Geographic Information Systems

Machine learning

o o o o o o o o o

Introduction: history

o Cell complexes: basis for boundary models of objects in
solid modeling systems

o first representation: Winged-Edge data structure
[Baumgardt, 1972]

o first representation for shapes with singularities (non-
manifold): Radial-Edge data structure [Weiler, 1989]

o Triangle meshes:
o basis for terrain modeling [Gold, 1977]
o finite elements analysis...

0 Tetrahedral meshes:
O representation for volume data in scientific visualization
[Cignoni et al., 1994]
O volumetric representation of objects [Paoluzzi et al.,1993]
o finite elements analysis...
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Shape topology
5

0 Manifold:

open ball (or half-ball)

o Non-manifold:
o non-manifold joints

O parts of different dimensionalities

o neighborhood of each point is a topological

Background: cell complexes
¢ |

0 k-dimensional cell (k-cell) G in the n-
dimensional Euclidean space E": a subset
of E" homeomorphic to a closed k-
dimensional ball

0 d-dimensional cell complex (cell d-
complex): finite collection of k-cells (k=d)
such that

o the intersection of any two non-disjoint cells
and o’ is the union of cells of the complex

A closed 3-ball

i

Cell 2-complex:
« 0-cells (vertices)
« 1-cells (edges)
« 2-cells (faces)

M
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Background: simplicial complexes
1-simplex (edge)
O k-dimensional Euclidean simplex (k-simplex): ~ 2-simplex (triangle)

3-simplex (tetrahedron
o convex hull of k+1 linearly independent points plex ( )

in the n-dimensional Euclidean space E" (k=n) . ° ﬂ Q

0 d-dimensional simplicial complex finite

collection of k-simplexes (k=d) such that yes N
O the intersection of any two simplexes, if not
empty, is a simplex belonging to both of them &

A simplicial 2- complex

Background: topological relations
e |

O Ingredients for defining data structures for cell and
simplicial complexes:

o Incidence (boundary and co-boundary) relations: relations
between cells of different dimensions

o Adjacency relations: relations between k-cells of the same
dimension though (k-1)-dimensional cells

A

Incidence boundary relation Incidence co-boundary
between 2-simplex and its relation between a 1-

bounding 1-simplexes cell and three 2-cells

Adjacency relation
between two 3-cells
sharing a face (2-cell)
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Operations to be supported

0 Topological connectivity queries for retrieving

0 cells on the boundary of a given cell

0 co-boundary of a cell: cells bounded by a given one

0 cells adjacent to another one along a lower
dimensional cell

(¢
0 Updates \‘ ] g

O e.g., vertex insertion/deletion; edge contraction;
edge swaps; Euler operators; simplex collapse

Requirements for data structures

I |
0 Compactness

0 Efficient support to

0 topological connectivity queries

0 updates

=/
5 Flexibility i
O Ease of use /adll
0 Scalability to manifolds (for non-manifold

data structures)
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Outline
11 |

0 Taxonomy of data structures

0 Review of data structures for manifold complexes
0 Approaches to non-manifold shape modeling

0 Data structures for simplicial complexes in arbitrary
dimensions

o0 The Mangrove library

0 Towards a localized approach: the PR-star octree

Data structures - Taxonomy
12|

0 Discretization of the shape

o cell versus simplicial complexes

0 Topology of the shape

o0 manifold versus non-manifold

0 Dimension of the shape and of its
discretization

o dimension-specific data structures

o dimension-independent data structures




Data structures - Taxonomy (2)
13 ]

0 Entities encoded

o all the cells (e.g., in a triangle mesh: all the triangles, edges and
vertices)

O a subset of the cells (e.g, in a triangle mesh: only triangles and
vertices)

o Granularity

O flat data structures: a single mesh discretizing the
shape

o multi-resolution (Level-Of-Detail (LOD)) data
structures:

® a collection of meshes discretizing the same shape

Data structures - Taxonomy (3)
A

o Explicit versus implicit representations

\Va
Entities: o
. . tetrahedra and A
0 Explicit data structures: vertices
O a subset of the cells
O topological relations among cells (explicit) 3
v
0 Implicit data structures: “

Encoded relations:
O topological relations are encoded indirectly
as tuples of cells in the same relation

Tetrahedron-Vertex and

Tetrahedron-Tetrahedron

v
. (v, e, f): triple of vertex v,
@ i || edge e and face f on the

surface of a hollow cube
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Data Structures: Presentation

0 We follow a classification of data structures based on dimension

Representations
for shapes

v

Dimension-
independent (nD)

» General

]

 Volumetric modeling

of 3D shapes

v

[ ]

» Boundary representation

of 3D shapes

« Terrains

2D 2D
Manifold Non-manifold

2D Cell complexes - manifold

0 Cells: vertices, edges and faces

O an edge is shared by at most two faces

O Most common: edge-based representations

o Edge plus its local connectivity:

o Edge-Vertex relation

o Edge-Face relation

O Partial Edge-Edge relation
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Partial Edge-Edge Relations
(.

o Winged-edge: four edges in
R, (e)

Winged-Edge

o DCEL: two edges in R, ,(e)

0 Half-Edge:

B edge e consists of two half- hey
edges he and he’ né: | he 8
O two edges in R, ;(e) associated he Half-Edge

with he v

O other two associated with he’

2D cell complexes — manifold (2)
18

0 Edge-based representations ° ° ‘

o Winged-Edge [Baumgart, 1972]; Half-Edge [Mantyla, 1983];
Quad-edge [Guibas et al, 1985], etc.

0 Half-edge implementation (public domain)
O Mantyla’s book (1988)

o OpenMesh Library (Computer Graphics Group, RWTH
Aachen).

o Computational Geometry Algorithms Library (CGAL)




2D Simplicial complexes — manifold
Triangle meshes

0 Edge-based data structures

O For cell complexes: vertices, edges and triangles explicitly
encoded

o Triangle-based data structures

o Only vertices and triangles explicitly encoded

® Indexed with Adj ies (1A) [Gold, 1977]; Corner table [Rossignac et al., 2001]
m 6.5 integer references per triangle

o Compact represenfqﬁons (for fixed-connectivity meshes)
= SOT, LR, SQuad [Gurung et al., 2010 and 2011]

= from 3 to 1.08 (on average) references per triangle

o0 Edge-based data structures about 1.8 times IA

3D Simplicial complexes — manifold
Tetrahedral meshes

0 Data structures representing all entities
o Vertices, edges, faces and tetrahedra encoded
m e.g., Facet-Edge [Dobkin and Lazlo, 1987], Triangle-Edge
[Natarajan et al., 2004]

O Tetrahedron-based data structures
o Only vertices and tetrahedra encoded

B Indexed with Adjacencies (IA) [Nielson, 1997, Paoluzzi et al,
1993], CHF [Lage et al., 2005]
m 8.5/8 references per tetrahedron
o Compact representation
m for fixed-connectivity meshes

m 4 references per tetrahedron - SOT [Gurung et al, 2010]
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Indexed triangle /tetrahedral data
structures

0 Array of vertices V

0 Each vertex v; encodes a position in Euclidean space and
possibly other attributes

0 Array of triangles/tetrahedra T

O Each triangle/ tetrahedron t, encodes the index
in V of its vertices and possibly other attributes

For tetrahedral meshes

V vo U1 UQ e o o vn—] vi = {X' yl Z}
l I I I R3,0
T to t] tg c° tm_j fi = {ivO' iv1/ iv2/ iv3}

IA data structure:

Indexed data structure with Adjacencies

O Array of vertices V

O Encodes position of each vertex

O Encodes a single incident triangle/ tetrahedron in T
O Array of triangles/tetrahedra T

O Encodes indices of three/four vertices in V

O Encodes indices of three/ four adjacent triangles/
tetrahedra in T

For tetrahedral meshes

V [vo] vi] v o | v=1{xyz i}
g
T to t1 t2 t - :{ i‘f7’ iv.2' iv:'i’/ iv44}
= ki b bos Uiz

L L1 1T =,
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o Combinatorial d-manifold [without boundary]: pure

o The class of d-manifolds is not decidable for d>=6;

0 A weaker definition of singularity related to the
connected components of the link of a cell

Representing non-manifolds

complex in which the link of each k-cell is
homemorphic to a triangulation of (d-k-1)-sphere

. Vv
m star of a cell: collection of all cells incident in it
m link: boundary of the star “

v

it is an open problem for d=5

O

Representing non-manifolds
Cell complexes

Extensions of edge-based data
structures for manifolds |
O Radial Edge [Weiler, 1989] :

’_’4

o Partial Entity [Lee and Lee, 2001]

o Tri-cyclic Cusp data structure [Gursoz et. al, 1990] ]

o Coupling Entities data structure [Yamaguchi and Kimura, ‘—IV(I_’
1995] l

o Extended maps [Cazier and Kraemer, 2010]

Decomposition into manifold
components [

o splitting at non-manifold vertices and edges

~)
re
O [Desaulniers and Stewart, 1992; Falcideno and Ratto, 1992; ( [, ]
Rossignac and Cardoze, 1999; Pesco et al., 2004] I
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Decomposition approach to non-manifolds

o Theoretical issves

o Decomposition into manifolds is not feasible in

higher dimensions

\ — ”‘
o Even in 3D: we cannot decompose into manifolds LA/ IN 2
parts without cutting at a manifold face

o Decomposition into nearly manifold

components [DeFloriani, Morando, Puppo, 2003; Hui et
al., 2006]

O generated by splitting a simplicial complex only at
simplexes corresponding to singularities

O unique

o valid in arbitrary dimensions

Valid nearly manifold component

Decomposition approach (2)

\
0 Connectivity among the components a

o through a hypergraph

0 Triangle- or tetrahedron-based data C, — v
structures for the components %
o Double-Level Decomposition (DLD) [Hui et al., 2006] C2 ‘

when using the IA data structure

o Compact
o Efficient topological queries ‘

o Difficult to update

o Suitable for extending compact @

representations to “non-manifolds”

12/10/14
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Dimension-Independent

Representations
Data Structures for shapes
2D 2D
Dirension-independent J Manifold Non-manifold
Representations (nD)
v L
Sl Manifold Non-manifold | I
Cell Simplicial clell Simplicial
Implicit Adjacency- Incidence- Incidence-
based based based
Cell Tuple
GMaps Indexed Data Structure Incidence Graph Incidence Simplicial

(for quasi-manifolds) Wwith Adjacencies Data Structure

Cell tuple data structure risson 1998

o Implicit representation for manifold cell complexes

0 Basic elements: tuples of cells and switch operators
between tuples

o Cell-tuple: (d+1)-tuple of cells (O, ..., O, ..., O4) such that
o o, is an i-cell,

O o, belongs to the boundary of o, (=0, 1,..., d-1)

A cell-tuple for a two-dimensional (d=2) complex: (v, e,, f)

o Vi .V4
Vig 2 Vg
e f e e f ey
® )
Va € vy ° °
v2 e4 V;
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i
Example for a 2-Complex
0 The cell-tuple data structure for the 2-complex shown in the picture consists of 24
cell-tuples:
o Each cell tuple consists of a vertex, edge and face
O An edge appears in four tuples (since it is common to two faces and has two extreme
vertices)
Cell tuples of edge @:
(3.94)
(3.9.8)
(5.9.A)
(5.9.8)
Cell-tuple Data Structure:
Switch Operator
30|

Given a cell-tuple (0y, Oy,..., Og):
O switch, (Og,..., Oyyeery Og) = (Opeee/Yiseerr Og)
o vy, is an i-cell different from o,

O (OgyeeesYye-+r Og) is a cell-tuple

H switchy(1,a,B)= (5,a,B)
c c
5 a 1
4 switch,(1,a,B)= (1,a,C)
g B b
c S 3 ¢ 2

12/10/14
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Cell-tuple data structure as a graph

o Cell tuples are represented as nodes of a labeled graph
0 Each are of the graph represents a switch operator

O The label (= 0, 1 or 2 in the 2D case) of an are:
O index of the switch operator described by the arc (5 a C)
o

2817 a8

0 For a 2-complex: # tuples (nodes) = 4*# edges and # arcs = 6* # edges

O Verbose representation

o All topological relations can be retrieved in optimal time

-%

Retrieving Topological Relations:

0  Retrieve boundary relation R, (Face-Vertex relation) for a face o
o Find a tuple containing

O  Let this be (v,e,0), apply alternatively:

o switch, (ve,0) = (v " ,e,0), which gives the other vertex of e

o switch, (v,e,0) = (v,e’,0), which gives the other edge sharing vertex v and
face

o Time complexity: linear in the number of vertices face

—gmaian, . ..""‘
// 5 & 1\\ “““““ y
/ v e e el
e o AO-
& A gB b1 A o ad g
\ 4 *d P, A
Ny eS8 2 )
x\ / C *dasnnanan '---. ------------

c - 'Efdn;b: retrieve R,o(B) (Face-Vertex) starting from (5,a,B)
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Cell-tuple Data Structure as a Graph
T

o Cell tuples are represented as nodes of a labeled
graph

0 Each are of the graph represents a switch operator

o In a 2-complex: < B
A a
o for each tuple we have three switch operators £ L \‘
@ # tuples (nodes) = 4*# edges ‘\ A gB b,
B # switch operators (ares) = 6* # edges N /: 3 ¢ 2 7
c ==

O It tends to be a verbose representation

o All topological relations can be retrieved in optimal time
by applying sequences of switch operators, given a
starting tuple

Generalized Maps (G-Maps)

[Lienhardt, 1988; 1994]
sy .|

0 Purely combinatorial objects
0 Based on the concept of dart (corresponding to cell-
tuple)

0 Each dart is formed by N+1 involutions (very similar
to switch operators)

0 Domain: quasi-manifold complexes, a subclass of
pseudo-manifolds

0 Very elegant implementations [Levy and Mallet, 1999]

12/10/14
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InCidence Graph [Edelsbrunner, 1987]
35|

0 General: for arbitrary cell complexes
o0 Implementation of Hasse diagram

o All cells explicit encoded
m

Immediate boundary (R, ;) and co-boundary (R, . ;) relations

encoded for each p-cell

R, , (Edge-Vertex)
Ry (Vertex-Edge)

R, , (Face-Edge)
R, , (Edge-Face)

Incidence Graph: Retrieving a

Co-boundary Relation
-—

Retrieve faces
incident at edges
sharing v,

 Retrieve edges
incident at v,

Retrieving Ry 5(v,) (Vertex-Face relation):
all faces incident at v,

12/10/14
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Incidence graph and implicit data structures
2 I ——
0 Domain

O IG: arbitrary cell complexes

o Cell-tuple: manifold cell complexes

o G-maps: quasi-manifold complexes

o Cell-tuples/ G-maps
O paths in the incidence graph

O ordered models

0 Encoding
o Cell tuples/G-maps as nodes of a labeled graph

m  Arcs of the graph represent switch operators (dart for G-maps)

0 G-maps more verbose than IG: IG/G-Maps ~50% in 2D; IG/G-Maps
~18% in 3D

Data structures for simplicial complexes

I I ——
o Common requirements

o Domain: abstract simplicial complexes of arbitrary
dimension

o Dimension-independent design and implementation
o Scalable to manifolds
o Efficient support to both connectivity queries and
updates
o Conflicting requirements
o Explicit encoding of all simplices

o Compactness

12/10/14
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Incidence Simplicial (IS) data structure

[DeFloriani et al., 2011]
N

o All simplices are explicitly encoded

o Simplified version of the Incidence Graph (IG)
Topological connectivity

o relation between an i-simplex and the (i-1)-simplices on

its boundary (as IG) _ =
VY =<

o minimal encoding of the local neighborhood (co-

boundary) of a simplex

IS data structure

an example for simplicial 3-complexes
20

0 Boundary relations:
O Tetrahedron-Triangle _
o Triangle-Edge @F’g 4\i<ﬂ—f< ‘
o Edge-Vertex « )
o Co-boundary relations as partial relations:
0 Vertex-Edge: one edge for each connected component of the link

0 Edge-Triangle: one triangle for each connected component of the
link

O Triangle-Tetrahedron: one tetrahedron for each connected
component of the link

g K b

12/10/14
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Generalized A (IA*) data structure

[Canino et al., 201 1]
a1 |

0 Only vertices and top simplexes encoded

o Top simplexes: not on the boundary of any other simplex (e.g.,
in 3D: tetrahedra, dangling triangles and edges)

0 Adjacency-based representation

o Extension of IA data structure
O Topological connectivity

o boundary relations from a top simplex and its
bounding vertices

o adjacency relations among top simplexes

o minimal encoding of the star of each vertex

IA* data structure:
an example for 3-complexes

o Only vertices and top simplexes (tetrahedraq,
dangling triangles and edges)

0 Vertex connectivity for top simplexes (R, relations)
0 Tetrahedron-Tetrahedron relation

o Triangle-Triangle and Edge-Edge relations for
dangling triangles and edges

0 One simplex for each cluster of k-dimensional
simplexes incident at a vertex

12/10/14
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IS vs IA* data structure
e 5

0 Extended to quad and hexahedral meshes and more

0 Storage cost

o IS: more compact than manifold edge-based (50-70%) and
facet-based (40-60%) data structures

o IA* more compact than IS (see next slide)
o lA*: 5% more compact than dimension-specific |1As
0 Topological connectivity queries

O IA* more efficient than IS on boundary (30% less) and
vertex-based co-boundary queries (35% less)

Comparison on storage costs
T I ——

Simplicial 2-complexes

Ratio among the Storage Costs of the IG, IS, and IA* data structures

uIGNS
- .:Z/I‘:: SimpIiCiaI 3-c°mplexes
o 02 04 06 08 1 12 14 16 18 2
=[GAS
mISNAT
IGNA*

[ 05 1 15 2 25 3 35
Ratio of Storage Costs among the IG, IS, and IA* data structures

12/10/14
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Comparison on storage costs (2)
I

Ratio among the Storage Costs of the IG, IS, and IA* data structures

P - IG/IS
2 —4— IS/IA*
g w0 1G/IA* IG/IS behavior in detail
60
40 T 1.8
- 16
o8 = 14 /’_’/
2 3 4 5 6 7 8 1.2

Dimension 1
08
0.6
04
02

The Mangrove library
I I m—

0 Rapid prototyping of data structures for simplicial and cell
complexes

o flexible: graph-based representation (mangrove) for any data
structure

O easy to use: simple and concise set of primitives supported
O Multi-platform, written in C++

O Implementation of five data structures
o IS and IA* data structures
o Incidence Graph (IG)

o Two data structures specific for 2D and 3D simplicial complexes in 3D space

o0 Released as GPLv3 software «t hitp://mangrovetds.sourceforge.net

12/10/14
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The Mangrove library (2)
I
o Current version:

O arbitrary cell complexes (IG and IS data structures)

0 IS and IA* for quad and hexahedral meshes

m Based on fixed cardinality of boundary relations

0 Topological editing operators: under development

o homology-preserving and homology-modifying Euler
operators in arbitrary dimensions for cell complexes
o Operators for simplicial complexes:
m Stellar operators
m Face collapse

m Edge contraction

High-dimensional simplicial complexes
Data structures

O Slmplex tree [Boissonnat and Maria, 2012]
o For abstract simplicial complexes of any dimension
o All simplexes explicitly stored in a trie

o Applications: construction of flag complexes and homology computation

0 Tidy set [Zomorodian, 2010]
o For simplicial sets (obtained from abstract simplicial complexes)
o Dual graph representation of the complex:
m nodes = top simplexes ; arcs = their intersection

O Application: computing homology of flag complexes

O Blocker data structure [Attali et al.,, 2011]
o Simplicial complexes close to clique complexes

O Representation: 1-skeleton plus inclusion minimal simplexes

12/10/14
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Towards localized data structures

0 Bottleneck on future exascale computing shifts for
processing costs to memory access costs
0 Moving to multi-core architectures
o Limiting factors: per-core memory size and bandwith
0 Requirements are still:
O random-access traversal operators

o efficient updates

A spatio-topological approach
The PR-star octree [Weiss et al., 2011]

50|
0 “Topology through space” e °
O topological connectivity queries o ©
through a spatial index on embedding space R °

0 Efficient reconstruction of topological
relations

O optimal application dependent local data
structures to be generated at runtime

0 Our approach (PR-star Octree)

O tetrahedral meshes

O generalizes to complexes in arbitrary
dimensions

12/10/14
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The PR-star octree
R

O Strategy o °

o augment PR(Point-Region) octree (index on
the vertices of the mesh) with the tetrahedra o
incident at its vertices

0 Data structure

o global indexed representation of the mesh
(without adjacencies)

O an octree node indexes a contiguous range of
vertices and tetrahedra

The PR-star octree

Storage costs
N

0 Topological overhead: 19% wrt compact indexed
representation with adjacencies (IA)

0 Total cost: PR-star is 62% of |IA

V Uo| V| U, 5o c Ui Vertex array

T [t |t (s “ e t,. Tetrahedra array
N f th 1

N ny| n;| N, « o n,; odes of the octree

12/10/14

26



Applications of PR-star octree

General Strategy
A | —

O lterate through octree nodes

0 For each leaf octree node

o Step 1: Build application-dependent local data
structure

O Step 2: Process mesh locally

o Step 3: Discard local data structure

0 Cost of building data structures is amortized over
multiple local operations

Applications of PR-star octree
Static and Dynamic

o Computing the star of a vertex:
o ~ 70% faster with PR-star than with IA
o cost amortized over a large portion of the mesh

o Mesh simplification (through edge contraction)

o similar simplification results in around the same amount of
time as IA

o 1% of the memory

o Successfully applied to compute discrete Morse

complexes on tetrahedral meshes [Wweiss et al.,
Eurovis2013] - 50% times faster than IA for Morse gradient
computation

Experiments performed on irregular and semi-regular data sets
containing up to 14 Millions of tetrahedra
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