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Introduction: shape discretization 

  Cellular decompositions (cell complexes) 
  Triangle and tetrahedral meshes 

(simplicial complexes) 
  Quad and unstructured hexahedral 

meshes 
  Nested meshes (e.g, quadtrees, 

hierarchical triangle meshes) 

 
 

2 



12/10/14 

2 

Introduction: applications 

  Computer Graphics 
  Computer-Aided Design (CAD) 

  Computer-Aided Engineering (CAE) 

  Finite Element Analysis 

  Animation 

  Scientific visualization 
  Geographic Information Systems 

  Machine learning 

  ….. 
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Introduction: history 

  Cell complexes: basis for boundary models of objects in 
solid modeling systems 
  first representation: Winged-Edge data structure 

[Baumgardt, 1972] 
  first representation for shapes with singularities (non-

manifold): Radial-Edge data structure [Weiler, 1989] 

  Triangle meshes: 
  basis for terrain modeling [Gold, 1977] 
  finite elements analysis… 

  Tetrahedral meshes: 
  representation for volume data in scientific visualization  

[Cignoni et al., 1994] 
  volumetric representation of objects [Paoluzzi et al.,1993] 
  finite elements analysis… 
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Shape topology 

  Manifold:  
 neighborhood of each point is a topological 

open ball (or half-ball) 

  Non-manifold: 
 non-manifold joints 
 parts of different dimensionalities  
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Background: cell complexes 

  k-dimensional cell (k-cell) σ in the n-
dimensional Euclidean space En: a subset 
of En homeomorphic to a closed k-
dimensional ball 

  d-dimensional cell complex (cell d-
complex): finite collection of k-cells (k≤d) 
such that 
  the intersection of any two non-disjoint cells σ 

and σ’ is the union of cells of the complex 
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A 3-cell 

Cell 2-complex: 
•   0-cells (vertices)  
•   1-cells (edges)  
•   2-cells (faces) 

A closed 3-ball 
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Background: simplicial complexes 

  k-dimensional Euclidean simplex (k-simplex):   
  convex hull of k+1 linearly independent points 

in the n-dimensional Euclidean space En (k≤n) 

  d-dimensional simplicial complex finite 
collection of k-simplexes (k≤d) such that 
  the intersection of any two simplexes, if not 

empty,  is a simplex belonging to both of them 
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1-simplex (edge) 
2-simplex (triangle) 
3-simplex (tetrahedron) 

yes 

no 

  
no 

A simplicial 2- complex 

Background: topological relations 

  Ingredients for defining data structures for cell and 
simplicial complexes: 

  Incidence (boundary and co-boundary) relations: relations 
between cells of different dimensions 

  Adjacency relations: relations between k-cells of the same 
dimension though (k-1)-dimensional cells 
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Incidence boundary relation 
between 2-simplex and its  

bounding 1-simplexes 
Adjacency relation 
between two 3-cells 

sharing a face (2-cell) 

e 

Incidence co-boundary 
relation between a 1-
cell and three 2-cells 
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Operations to be supported  
 

  Topological connectivity queries for retrieving 
  cells on the boundary of a given cell 
  co-boundary of a cell: cells bounded by a given one 
  cells adjacent to another one along a lower 

dimensional cell 

  Updates 
  e.g., vertex insertion/deletion; edge contraction; 

edge swaps; Euler operators; simplex collapse 
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Requirements for data structures 

  Compactness 

  Efficient support to   

  topological connectivity queries 

 updates 

  Flexibility 

  Ease of use 

  Scalability to manifolds (for non-manifold 

data structures) 
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Outline 

  Taxonomy of data structures 
  Review of data structures for manifold complexes  
  Approaches to non-manifold shape modeling 
  Data structures for simplicial complexes in arbitrary 

dimensions 
  The Mangrove library 
  Towards a localized approach: the PR-star octree 

11 

Data structures - Taxonomy 

  Discretization of the shape 
  cell versus simplicial complexes 

  Topology of the shape 
 manifold versus non-manifold 

  Dimension of the shape and of its 
discretization 
  dimension-specific data structures 
  dimension-independent data structures  
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Data structures - Taxonomy (2) 

  Entities encoded 
  all the cells (e.g., in a triangle mesh: all the triangles, edges and 

vertices) 
  a subset of  the cells (e.g, in a triangle mesh: only triangles and 

vertices) 

  Granularity 
  flat data structures: a single mesh discretizing the 

shape 
 multi-resolution (Level-Of-Detail (LOD)) data 

structures:  
  a collection of meshes discretizing the same shape 
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Data structures - Taxonomy (3) 

  Explicit versus implicit representations 

  Explicit data structures:  
  a subset of the cells  
  topological relations among cells (explicit) 

  Implicit data structures:   
  topological relations are encoded indirectly 

as tuples of cells in the same relation 
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Entities: 
tetrahedra and 
vertices 

4 σ	


3 

1 
2

Encoded relations: 

Tetrahedron-Vertex and 

Tetrahedron-Tetrahedron 

v 
e f 

(v, e, f): triple of vertex v, 
edge e and face f on the 
surface of a hollow cube 
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Data Structures: Presentation 

  We follow a classification of data structures based on dimension 

15 

2D 
Manifold 

2D 
Non-manifold 

Representations 
for shapes 

2D 3D Dimension-
independent (nD) 

•  General 
•  Volumetric modeling 
of 3D shapes 

•  Boundary representation 
  of 3D shapes  
•  Terrains 

 2D Cell complexes - manifold 

  Cells: vertices, edges and faces 
  an edge is shared by at most two faces 

  Most common: edge-based representations 
 

  Edge plus its local connectivity: 
  Edge-Vertex relation 
  Edge-Face relation 
  Partial Edge-Edge relation 
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Partial Edge-Edge Relations 

  Winged-edge: four edges in 
R1,1(e) 

  DCEL: two edges in R1,1(e) 

  Half-Edge:  
  edge e consists of two half-

edges he and he’ 
  two edges in R1,1(e) associated 

with he  
   other two associated with he’  

f1 f2 e 

e1 e2 

e4 e3 

u 

v 

f1 f2 e 

e2 

e3 

u 

v 

Winged-Edge   

 DCEL 

Half-Edge 
f1 he 

u 

he’ 

he1 

he3 
f2 

v 

 2D cell complexes – manifold (2) 

  Edge-based representations 

  Winged-Edge [Baumgart, 1972]; Half-Edge [Mantyla, 1983]; 
Quad-edge [Guibas et al, 1985], etc. 

  Half-edge implementation (public domain) 
  Mantyla’s book (1988) 

  OpenMesh Library (Computer Graphics Group, RWTH 
Aachen). 

  Computational Geometry Algorithms Library (CGAL) 
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2D Simplicial complexes – manifold 
Triangle meshes 

  Edge-based data structures 
  For cell complexes: vertices, edges and triangles explicitly 

encoded 

  Triangle-based data structures 
 Only vertices and triangles explicitly encoded 

  Indexed with Adjacencies (IA) [Gold, 1977]; Corner table [Rossignac et al., 2001] 

  6.5 integer references per triangle   

 Compact representations (for fixed-connectivity meshes) 
  SOT, LR, SQuad [Gurung et al., 2010 and 2011] 
  from 3 to 1.08 (on average) references per triangle 

  Edge-based data structures about 1.8 times IA 
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3D Simplicial complexes – manifold 
Tetrahedral meshes 

  Data structures representing all entities  
  Vertices, edges, faces and tetrahedra encoded  

  e.g., Facet-Edge  [Dobkin and Lazlo, 1987], Triangle-Edge 
[Natarajan et al., 2004] 

  Tetrahedron-based data structures 
 Only vertices and tetrahedra encoded 

  Indexed with Adjacencies (IA) [Nielson, 1997, Paoluzzi et al, 
1993], CHF [Lage et al., 2005] 

  8.5/8 references per tetrahedron  

 Compact representation  
  for fixed-connectivity meshes 
  4 references per tetrahedron - SOT [Gurung et al, 2010] 

20 
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Indexed triangle/tetrahedral data 
structures 

  Array of vertices V 
  Each vertex vi encodes a position in Euclidean space and 

possibly other attributes 

  Array of triangles/tetrahedra T 
  Each triangle/ tetrahedron tj encodes the index  

in V of its vertices and possibly other attributes 

vi = {x, y, z} 

ti = {iv0, iv1, iv2, iv3} 

R3,0 

21 

For tetrahedral meshes 

IA data structure:  
Indexed data structure with Adjacencies 

  Array of vertices V 
  Encodes position of each vertex 

  Encodes a single incident triangle/ tetrahedron in T 

  Array of triangles/tetrahedra T 
  Encodes indices of three/four vertices in V 

  Encodes indices of three/ four adjacent triangles/ 
tetrahedra in T 

                   it  

ti ={           }  iv1, iv2, iv3, iv4 
  it1, it2, it3, it4 

R3,0 

R3,3 

vi = {x, y, z,    } 

22 

For tetrahedral meshes 
 

t 

4 σ	



3 

1 
2

v 



12/10/14 

12 

Representing non-manifolds 

  Combinatorial d-manifold [without boundary]: pure 
complex in which the link of each k-cell is 
homemorphic to a triangulation of (d-k-1)-sphere  

  star of a cell: collection  of all cells incident in it  
  link: boundary of the star 

 

  The class of d-manifolds is not decidable for d>=6; 
it is an open problem for d=5 

  A weaker definition of singularity related to the 
connected components of the link of a cell 

23 
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Representing non-manifolds 
Cell complexes 

  Extensions of edge-based data 
structures for manifolds 
  Radial Edge [Weiler, 1989] 

  Partial Entity [Lee and Lee, 2001] 
  Tri-cyclic Cusp data structure [Gursoz et. al, 1990] 
  Coupling Entities data structure [Yamaguchi and Kimura, 

1995] 
  Extended maps [Cazier and Kraemer, 2010] 

 
  Decomposition into manifold 

components 
   splitting at non-manifold vertices and edges 

  [Desaulniers and Stewart, 1992; Falcideno and Ratto, 1992; 
Rossignac and Cardoze, 1999; Pesco et al., 2004] 

24 
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Decomposition approach to non-manifolds 

  Theoretical issues 
  Decomposition into manifolds is not feasible in 

higher dimensions 
  Even in 3D: we cannot decompose into manifolds 

parts without cutting at a manifold face 

  Decomposition into nearly manifold 
components [DeFloriani, Morando, Puppo, 2003; Hui et 
al., 2006] 

  generated by splitting a simplicial complex only at 
simplexes corresponding to singularities 

  unique 
  valid in arbitrary dimensions 
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Valid nearly manifold component 
 

Decomposition approach (2) 

  Connectivity among the components 
  through a hypergraph 

  Triangle- or tetrahedron-based data 
structures for the components 
  Double-Level Decomposition (DLD) [Hui et al., 2006] 

when using the IA data structure 
 Compact 
  Efficient topological queries  
 Difficult to update 
  Suitable for extending compact 

representations to “non-manifolds” 

26 

C2 

v 

e 

C1 

C3 

e 

v 

v C1 

C2 
C3 

e 



12/10/14 

14 

Dimension-Independent  
Data Structures 

27 

Manifold Non-manifold 

Implicit Incidence-
based 

Adjacency-
based 

Cell Simplicial 

Dimension-independent 
Representations (nD) 

Cell 

Cell Tuple 
 GMaps 
(for quasi-manifolds) 
 

Indexed Data Structure 
with Adjacencies 

Incidence Graph 

Simplicial 

Incidence-
based 

Incidence Simplicial 
Data Structure 

2D 
Manifold 

2D  
Non-manifold 

Representations 
for shapes 

2D 3D nD 

Cell tuple data structure [Brisson 1998]  

  Implicit representation for manifold cell complexes 

  Basic elements:  tuples of cells and switch operators 
between tuples 

  Cell-tuple: (d+1)-tuple  of cells (σ0, …, σi, …, σd) such that  
  σi is an i-cell,  
  σi belongs to the boundary of σi+1  (I = 0, 1,…, d-1) 

28 

e1 

e2 

e3 

e4 

v1 

v2 v3 

v4 

f e1 

e2 

e3 

e4 

v1 

v2 v3 

v4 

f 

A cell-tuple for a two-dimensional  (d=2) complex:  (v1, e1, f) 
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The Cell-tuple  Data Structure: an 
Example for a 2-Complex 

  The cell-tuple data structure for the 2-complex shown in the picture consists of 24 
cell-tuples: 
  Each cell tuple consists of a vertex, edge and face 

  An edge appears in four tuples (since it is common to two faces and has two extreme 
vertices) 

 
 

C 

A B 

1 

2 3 

4 

5 a 

b 

c 

e 

d 
g 

Cell tuples of edge g: 
(3,g,A) 
(3,g,B) 
(5,g,A) 
(5,g,B)  

A B 

3 

5 

g 

Cell-tuple  Data Structure:  
Switch Operator  

Given a cell-tuple (σ0, σ1,…, σd):  

  switchi (σ0,…, σi,…, σd) = (σ0,…,γi,…, σd)  
  γi is an i-cell different from σi  
   (σ0,…,γi,…, σd) is a cell-tuple 

30 

C 

A B 

1

2 3 

4 

5 a 
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d 
g 

C 

A B 

1 

2 3 

4 

5 a 

b 

c 

e 

d 
g switch0(1,a,B)= (5,a,B) 

C 

A B 

1 

2 3 

4 

5 a 

b 

c 

e 

d 
g 

C 

A B 

1 

2 3 

4 

5 a 

b 

c 

e 

d 
g 

switch2(1,a,B)= (1,a,C) 
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Cell-tuple data structure as a graph 

  Cell tuples are represented as nodes of a labeled graph  

  Each arc of the graph represents a switch operator 

  The label (= 0, 1 or 2 in the 2D case) of an arc: 
  index of the switch operator described by the  arc 

  For a 2-complex: # tuples (nodes) = 4*# edges  and # arcs = 6* # edges  

  Verbose representation 

  All topological relations can be retrieved in optimal time  

(1,a,B) (1,a,C) 

1 

1 

1 

2 

2 

2 2 0 

0 
0 0 A B 

1 

2 3 

4 

5 a 

b 
c 

e 

d 
g 

C 

(1,b,B) 

(5,a,B) 

C 

A B 

1 

2 3 

4 

5 a 

b 

c 

e 

d 
g 
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  Retrieve  boundary relation R2,0 (Face-Vertex relation) for a face σ 

  Find a tuple containing σ	


  Let this be (v,e,σ), apply alternatively: 
  switch0 (v,e,σ) = (v’,e,σ), which gives the other vertex of e 
  switch1 (v,e,σ) = (v,e’,σ), which gives the other edge sharing vertex v and 

face σ 

  Time complexity: linear in the number of vertices face σ 

 

 

     

Retrieving Topological Relations:  
an Example 
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A B 

1 

2 3 

4 

5 a 
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g 

1 

1 

1 

2 

2 

2 2 0 

0 
0 0 A B 

1 

2 3 

4 

5 a 

b 
c 

e 

d 
g 

C 
Example: retrieve R20(B) (Face-Vertex) starting from (5,a,B) 
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Cell-tuple Data Structure as a Graph 

  Cell tuples are represented as nodes of a labeled 
graph  

  Each arc of the graph represents a switch operator 

  In a 2-complex: 

  for each tuple we have three switch operators 

  # tuples (nodes) = 4*# edges   

  # switch operators (arcs) = 6* # edges  

  It tends to be a verbose representation 

  All topological relations can be retrieved in optimal time 
by applying sequences of switch operators, given a 
starting tuple 

C 

A B 

1 

2 3 

4 

5 a 

b 

c 

e 

d 
g 

Generalized Maps (G-Maps) 
[Lienhardt, 1988; 1994] 

  Purely combinatorial objects 
  Based on the concept of dart (corresponding to cell-

tuple) 
  Each dart is formed by N+1 involutions (very similar 

to switch operators) 
  Domain: quasi-manifold complexes, a subclass of 

pseudo-manifolds 
  Very elegant implementations [Levy and Mallet, 1999] 
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Incidence Graph [Edelsbrunner, 1987] 

  General: for arbitrary cell complexes 

  Implementation of Hasse diagram 

  All cells explicit encoded 

  Immediate boundary (Rpp-1) and co-boundary (Rpp+1) relations 
encoded for each p-cell  

  

35 

R2,1 (Face-Edge)  
R1,2 (Edge-Face) 

R1,0 (Edge-Vertex)  
R0,1 (Vertex-Edge) 

v1 

v6 

v3 

v2 

v4 

v5 

e7 

e1 

e2 e3 

e4 

e5 

e6 

e8 

f1 
f2 

f3 

e5 e4 e3 e2 e1 e6 e7 e8 

f1 f2 f3 

v5 v4 v3 v2 v1 v6 
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Incidence Graph:  Retrieving a  
Co-boundary Relation 

v1 

v6 

v3 

v2 

v4 

v5 

e7 

e1 

e2 e3 

e4 

e5 

e6 

e8 

f1 
f2 

f3 

e5 e4 e3 e2 e1 e6 e7 e8 

f1 f2 f3 

v5 v4 v3 v2 v1 v6 

Retrieving R0,2(v1) (Vertex-Face relation): 
all faces incident at v1 

f1 f2 f3 

e5 e4 e3 e2 e1 e6 e7 e8 

v5 v4 v3 v2 v1 v6 

Retrieve edges 
incident at v1 

Retrieve faces 
incident at edges 
sharing v1 
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Incidence graph and implicit data structures 

  Domain 
  IG: arbitrary cell complexes 

  Cell-tuple: manifold cell complexes 
  G-maps: quasi-manifold complexes 

 

  Cell-tuples/ G-maps 
  paths in the incidence graph 
  ordered models 

  Encoding 
  Cell tuples/G-maps  as nodes of a labeled graph  

   Arcs of the graph represent switch operators (dart for G-maps) 

  G-maps more verbose than IG: IG/G-Maps ~50% in 2D; IG/G-Maps 
~18% in 3D  
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Data structures for simplicial complexes 

  Common requirements 
 Domain: abstract simplicial complexes of arbitrary 

dimension  
 Dimension-independent design and implementation 
 Scalable to manifolds 
 Efficient support to both connectivity queries and 

updates 

  Conflicting requirements 
 Explicit encoding of all simplices 
 Compactness 

38 
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Incidence Simplicial (IS) data structure 
[DeFloriani et al., 2011] 
 

  All simplices are explicitly encoded 
  Simplified version of the Incidence Graph (IG) 

Topological connectivity 
  relation between an i-simplex and the (i-1)-simplices on 

its boundary (as IG) 

 
 minimal encoding of the local neighborhood (co-

boundary) of a simplex 

 

 

 

39 

e

v 
f 

IS data structure 
an example for simplicial 3-complexes 

  Boundary relations: 
  Tetrahedron-Triangle 

  Triangle-Edge 
  Edge-Vertex 

  Co-boundary relations as partial relations: 
 Vertex-Edge: one edge for each connected component of the link 

  Edge-Triangle: one triangle for each connected component of the 
link 

  Triangle-Tetrahedron: one tetrahedron for each connected 
component of the link 

40 
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Generalized IA (IA*) data structure  
[Canino et al., 2011] 
 

  Only vertices and top simplexes encoded  
  Top simplexes: not on the boundary of any other simplex (e.g., 

in 3D: tetrahedra, dangling triangles and edges) 

  Adjacency-based representation 
  Extension of IA data structure 

  Topological connectivity 
  boundary relations from a top simplex and its 

bounding vertices 
  adjacency relations among top simplexes 
 minimal encoding of the star of each vertex 
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IA* data structure:  
an example for 3-complexes 

  Only vertices and top simplexes (tetrahedra, 
dangling triangles and edges) 

  Vertex connectivity for top simplexes (Rk0 relations) 

  Tetrahedron-Tetrahedron relation 

  Triangle-Triangle and  Edge-Edge relations for 
dangling triangles and edges 

  One simplex for each cluster of k-dimensional 
simplexes incident at a vertex 

42 
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IS vs IA* data structure 

  Extended to quad and hexahedral meshes and more 
  Storage cost 

  IS: more compact than manifold edge-based (50-70%) and 
facet-based (40-60%) data structures 

  IA* more compact than IS (see next slide) 

  IA*: 5% more compact than dimension-specific IAs 

  Topological  connectivity queries 

  IA* more efficient than IS on boundary (30% less) and 
vertex-based co-boundary queries (35% less) 
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Comparison on storage costs 
44 

Simplicial 2-complexes 

Simplicial 3-complexes 
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Comparison on storage costs (2) 
45 

IG/IS behavior in detail 

The Mangrove library 

  Rapid prototyping of data structures for simplicial  and cell 
complexes 
  flexible: graph-based representation (mangrove) for any data 

structure 
  easy to use: simple and concise set of primitives supported 

  Multi-platform, written in C++ 
  Implementation of five data structures 

  IS and IA* data structures 

  Incidence Graph (IG) 
  Two data structures  specific for 2D and 3D simplicial complexes in 3D space  

  Released as GPLv3 software at http://mangrovetds.sourceforge.net 
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The Mangrove library (2) 

  Current version: 
  arbitrary cell complexes (IG and IS data structures) 

  IS and IA* for quad and hexahedral meshes  
 Based on  fixed cardinality of boundary relations 

  Topological editing operators: under development  
 homology-preserving and homology-modifying Euler 

operators in arbitrary dimensions for cell complexes 
   Operators for simplicial complexes: 

 Stellar operators 
 Face collapse 
 Edge contraction 
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High-dimensional simplicial complexes 
Data structures 

  Simplex tree [Boissonnat and Maria, 2012] 

  For abstract simplicial complexes of any dimension 

  All simplexes explicitly stored in a trie 
  Applications: construction of flag complexes and homology computation 

  Tidy set [Zomorodian, 2010] 

  For simplicial sets (obtained from abstract simplicial complexes) 
  Dual graph representation of the complex: 

  nodes = top simplexes ; arcs = their intersection 
  Application: computing homology of flag complexes 

  Blocker data structure [Attali et al., 2011] 

  Simplicial complexes close to clique complexes 
  Representation: 1-skeleton plus inclusion minimal simplexes 

48 
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Towards localized data structures 

  Bottleneck on future exascale computing shifts for 
processing costs to memory access costs 

  Moving to multi-core architectures 
 Limiting factors: per-core memory size and bandwith 

  Requirements are still: 
  random-access traversal operators  
 efficient updates 
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A spatio-topological approach 
The PR-star octree [Weiss et al., 2011] 

  “Topology through space” 
  topological connectivity queries  

through a spatial index on embedding space 

  Efficient reconstruction of topological 
relations 
 optimal application dependent  local data 

structures to be generated at runtime 

  Our approach (PR-star Octree) 
  tetrahedral meshes 
 generalizes to complexes in arbitrary 

dimensions 
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The PR-star octree 

  Strategy 
 augment  PR(Point-Region)  octree (index on 

the vertices of the mesh) with the tetrahedra 
incident at its vertices 

  Data structure 
 global indexed representation of the mesh 

(without adjacencies) 
 an octree node indexes a contiguous range of 

vertices  and tetrahedra 
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The PR-star octree 
Storage costs 

  Topological overhead: 19% wrt compact indexed 
representation with adjacencies (IA) 

  Total cost: PR-star is 62% of IA 
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Vertex array 

Tetrahedra array 

Nodes of the octree 
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Applications of PR-star octree 
General Strategy 

  Iterate through octree nodes 
 

  For each leaf octree node 
 Step 1: Build application-dependent local data 

structure 
 Step 2: Process mesh locally 
 Step 3: Discard local data structure 

  Cost of building data structures is amortized over 
multiple local operations 
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Applications of PR-star octree 
Static and Dynamic 

  Computing the star of a vertex: 
  ~ 70% faster with PR-star than with  IA 

  cost amortized over a large portion of the mesh 

  Mesh simplification (through edge contraction) 
  similar simplification results in around the same amount of 

time as IA 
  1% of the memory 

  Successfully applied to compute discrete Morse 
complexes on tetrahedral meshes [Weiss et al., 
Eurovis2013] – 50% times faster than IA for Morse gradient 
computation 

Experiments performed on irregular and semi-regular data sets  
containing up to 14 Millions of tetrahedra 
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