
12/10/14

1

EFFICIENT AND EFFECTIVE
REPRESENTATIONS FOR SHAPE
MODELING AND ANALYSIS

Leila De Floriani,
University of Genova (Italy)

1

Introduction: shape discretization

  Cellular decompositions (cell complexes)
  Triangle and tetrahedral meshes

(simplicial complexes)
  Quad and unstructured hexahedral

meshes
  Nested meshes (e.g, quadtrees,

hierarchical triangle meshes)

2

12/10/14

2

Introduction: applications

  Computer Graphics
  Computer-Aided Design (CAD)

  Computer-Aided Engineering (CAE)

  Finite Element Analysis

  Animation

  Scientific visualization
  Geographic Information Systems

  Machine learning

  …..

3

Introduction: history

  Cell complexes: basis for boundary models of objects in
solid modeling systems
  first representation: Winged-Edge data structure

[Baumgardt, 1972]
  first representation for shapes with singularities (non-

manifold): Radial-Edge data structure [Weiler, 1989]

  Triangle meshes:
  basis for terrain modeling [Gold, 1977]
  finite elements analysis…

  Tetrahedral meshes:
  representation for volume data in scientific visualization

[Cignoni et al., 1994]
  volumetric representation of objects [Paoluzzi et al.,1993]
  finite elements analysis…

4

12/10/14

3

Shape topology

  Manifold:
 neighborhood of each point is a topological

open ball (or half-ball)

  Non-manifold:
 non-manifold joints
 parts of different dimensionalities

5

Background: cell complexes

  k-dimensional cell (k-cell) σ in the n-
dimensional Euclidean space En: a subset
of En homeomorphic to a closed k-
dimensional ball

  d-dimensional cell complex (cell d-
complex): finite collection of k-cells (k≤d)
such that
  the intersection of any two non-disjoint cells σ

and σ’ is the union of cells of the complex

6

A 3-cell

Cell 2-complex:
•  0-cells (vertices)
•  1-cells (edges)
•  2-cells (faces)

A closed 3-ball

12/10/14

4

Background: simplicial complexes

  k-dimensional Euclidean simplex (k-simplex):
  convex hull of k+1 linearly independent points

in the n-dimensional Euclidean space En (k≤n)

  d-dimensional simplicial complex finite
collection of k-simplexes (k≤d) such that
  the intersection of any two simplexes, if not

empty, is a simplex belonging to both of them

7

1-simplex (edge)
2-simplex (triangle)
3-simplex (tetrahedron)

yes

no

no

A simplicial 2- complex

Background: topological relations

  Ingredients for defining data structures for cell and
simplicial complexes:

  Incidence (boundary and co-boundary) relations: relations
between cells of different dimensions

  Adjacency relations: relations between k-cells of the same
dimension though (k-1)-dimensional cells

8

Incidence boundary relation
between 2-simplex and its

bounding 1-simplexes
Adjacency relation
between two 3-cells

sharing a face (2-cell)

e

Incidence co-boundary
relation between a 1-
cell and three 2-cells

12/10/14

5

Operations to be supported

  Topological connectivity queries for retrieving
  cells on the boundary of a given cell
  co-boundary of a cell: cells bounded by a given one
  cells adjacent to another one along a lower

dimensional cell

  Updates
  e.g., vertex insertion/deletion; edge contraction;

edge swaps; Euler operators; simplex collapse

9

s

v

σ	

Requirements for data structures

  Compactness

  Efficient support to

  topological connectivity queries

 updates

  Flexibility

  Ease of use

  Scalability to manifolds (for non-manifold

data structures)

10

12/10/14

6

Outline

  Taxonomy of data structures
  Review of data structures for manifold complexes
  Approaches to non-manifold shape modeling
  Data structures for simplicial complexes in arbitrary

dimensions
  The Mangrove library
  Towards a localized approach: the PR-star octree

11

Data structures - Taxonomy

  Discretization of the shape
  cell versus simplicial complexes

  Topology of the shape
 manifold versus non-manifold

  Dimension of the shape and of its
discretization
  dimension-specific data structures
  dimension-independent data structures

12

12/10/14

7

Data structures - Taxonomy (2)

  Entities encoded
  all the cells (e.g., in a triangle mesh: all the triangles, edges and

vertices)
  a subset of the cells (e.g, in a triangle mesh: only triangles and

vertices)

  Granularity
  flat data structures: a single mesh discretizing the

shape
 multi-resolution (Level-Of-Detail (LOD)) data

structures:
  a collection of meshes discretizing the same shape

13

Data structures - Taxonomy (3)

  Explicit versus implicit representations

  Explicit data structures:
  a subset of the cells
  topological relations among cells (explicit)

  Implicit data structures:
  topological relations are encoded indirectly

as tuples of cells in the same relation

14

Entities:
tetrahedra and
vertices

4 σ	

3

1
2

Encoded relations:

Tetrahedron-Vertex and

Tetrahedron-Tetrahedron

v
e f

(v, e, f): triple of vertex v,
edge e and face f on the
surface of a hollow cube

12/10/14

8

Data Structures: Presentation

  We follow a classification of data structures based on dimension

15

2D
Manifold

2D
Non-manifold

Representations
for shapes

2D 3D Dimension-
independent (nD)

•  General
•  Volumetric modeling
of 3D shapes

•  Boundary representation
 of 3D shapes
•  Terrains

 2D Cell complexes - manifold

  Cells: vertices, edges and faces
  an edge is shared by at most two faces

  Most common: edge-based representations

  Edge plus its local connectivity:
  Edge-Vertex relation
  Edge-Face relation
  Partial Edge-Edge relation

16

f1 f2 e

e

e1 e2

e4 e3

e

u

v
e v

f

e

12/10/14

9

17

Partial Edge-Edge Relations

  Winged-edge: four edges in
R1,1(e)

  DCEL: two edges in R1,1(e)

  Half-Edge:
  edge e consists of two half-

edges he and he’
  two edges in R1,1(e) associated

with he
  other two associated with he’

f1 f2 e

e1 e2

e4 e3

u

v

f1 f2 e

e2

e3

u

v

Winged-Edge

 DCEL

Half-Edge
f1 he

u

he’

he1

he3
f2

v

 2D cell complexes – manifold (2)

  Edge-based representations

  Winged-Edge [Baumgart, 1972]; Half-Edge [Mantyla, 1983];
Quad-edge [Guibas et al, 1985], etc.

  Half-edge implementation (public domain)
  Mantyla’s book (1988)

  OpenMesh Library (Computer Graphics Group, RWTH
Aachen).

  Computational Geometry Algorithms Library (CGAL)

18

u

v

12/10/14

10

2D Simplicial complexes – manifold
Triangle meshes

  Edge-based data structures
  For cell complexes: vertices, edges and triangles explicitly

encoded

  Triangle-based data structures
 Only vertices and triangles explicitly encoded

  Indexed with Adjacencies (IA) [Gold, 1977]; Corner table [Rossignac et al., 2001]

  6.5 integer references per triangle

 Compact representations (for fixed-connectivity meshes)
  SOT, LR, SQuad [Gurung et al., 2010 and 2011]
  from 3 to 1.08 (on average) references per triangle

  Edge-based data structures about 1.8 times IA

19

t

v

t

3D Simplicial complexes – manifold
Tetrahedral meshes

  Data structures representing all entities
  Vertices, edges, faces and tetrahedra encoded

  e.g., Facet-Edge [Dobkin and Lazlo, 1987], Triangle-Edge
[Natarajan et al., 2004]

  Tetrahedron-based data structures
 Only vertices and tetrahedra encoded

  Indexed with Adjacencies (IA) [Nielson, 1997, Paoluzzi et al,
1993], CHF [Lage et al., 2005]

  8.5/8 references per tetrahedron

 Compact representation
  for fixed-connectivity meshes
  4 references per tetrahedron - SOT [Gurung et al, 2010]

20

4 σ	

3

1
2

v

12/10/14

11

Indexed triangle/tetrahedral data
structures

  Array of vertices V
  Each vertex vi encodes a position in Euclidean space and

possibly other attributes

  Array of triangles/tetrahedra T
  Each triangle/ tetrahedron tj encodes the index

in V of its vertices and possibly other attributes

vi = {x, y, z}

ti = {iv0, iv1, iv2, iv3}

R3,0

21

For tetrahedral meshes

IA data structure:
Indexed data structure with Adjacencies

  Array of vertices V
  Encodes position of each vertex

  Encodes a single incident triangle/ tetrahedron in T

  Array of triangles/tetrahedra T
  Encodes indices of three/four vertices in V

  Encodes indices of three/ four adjacent triangles/
tetrahedra in T

 it

ti ={ } iv1, iv2, iv3, iv4
 it1, it2, it3, it4

R3,0

R3,3

vi = {x, y, z, }

22

For tetrahedral meshes

t

4 σ	

3

1
2

v

12/10/14

12

Representing non-manifolds

  Combinatorial d-manifold [without boundary]: pure
complex in which the link of each k-cell is
homemorphic to a triangulation of (d-k-1)-sphere

  star of a cell: collection of all cells incident in it
  link: boundary of the star

  The class of d-manifolds is not decidable for d>=6;
it is an open problem for d=5

  A weaker definition of singularity related to the
connected components of the link of a cell

23

v

e

e

v

v v

Representing non-manifolds
Cell complexes

  Extensions of edge-based data
structures for manifolds
  Radial Edge [Weiler, 1989]

  Partial Entity [Lee and Lee, 2001]
  Tri-cyclic Cusp data structure [Gursoz et. al, 1990]
  Coupling Entities data structure [Yamaguchi and Kimura,

1995]
  Extended maps [Cazier and Kraemer, 2010]

  Decomposition into manifold

components
  splitting at non-manifold vertices and edges

  [Desaulniers and Stewart, 1992; Falcideno and Ratto, 1992;
Rossignac and Cardoze, 1999; Pesco et al., 2004]

24

e

v

12/10/14

13

Decomposition approach to non-manifolds

  Theoretical issues
  Decomposition into manifolds is not feasible in

higher dimensions
  Even in 3D: we cannot decompose into manifolds

parts without cutting at a manifold face

  Decomposition into nearly manifold
components [DeFloriani, Morando, Puppo, 2003; Hui et
al., 2006]

  generated by splitting a simplicial complex only at
simplexes corresponding to singularities

  unique
  valid in arbitrary dimensions

25

Valid nearly manifold component

Decomposition approach (2)

  Connectivity among the components
  through a hypergraph

  Triangle- or tetrahedron-based data
structures for the components
  Double-Level Decomposition (DLD) [Hui et al., 2006]

when using the IA data structure
 Compact
  Efficient topological queries
 Difficult to update
  Suitable for extending compact

representations to “non-manifolds”

26

C2

v

e

C1

C3

e

v

v C1

C2
C3

e

12/10/14

14

Dimension-Independent
Data Structures

27

Manifold Non-manifold

Implicit Incidence-
based

Adjacency-
based

Cell Simplicial

Dimension-independent
Representations (nD)

Cell

Cell Tuple
 GMaps
(for quasi-manifolds)

Indexed Data Structure
with Adjacencies

Incidence Graph

Simplicial

Incidence-
based

Incidence Simplicial
Data Structure

2D
Manifold

2D
Non-manifold

Representations
for shapes

2D 3D nD

Cell tuple data structure [Brisson 1998]

  Implicit representation for manifold cell complexes

  Basic elements: tuples of cells and switch operators
between tuples

  Cell-tuple: (d+1)-tuple of cells (σ0, …, σi, …, σd) such that
  σi is an i-cell,
  σi belongs to the boundary of σi+1 (I = 0, 1,…, d-1)

28

e1

e2

e3

e4

v1

v2 v3

v4

f e1

e2

e3

e4

v1

v2 v3

v4

f

A cell-tuple for a two-dimensional (d=2) complex: (v1, e1, f)

12/10/14

15

29

The Cell-tuple Data Structure: an
Example for a 2-Complex

  The cell-tuple data structure for the 2-complex shown in the picture consists of 24
cell-tuples:
  Each cell tuple consists of a vertex, edge and face

  An edge appears in four tuples (since it is common to two faces and has two extreme
vertices)

C

A B

1

2 3

4

5 a

b

c

e

d
g

Cell tuples of edge g:
(3,g,A)
(3,g,B)
(5,g,A)
(5,g,B)

A B

3

5

g

Cell-tuple Data Structure:
Switch Operator

Given a cell-tuple (σ0, σ1,…, σd):

  switchi (σ0,…, σi,…, σd) = (σ0,…,γi,…, σd)
  γi is an i-cell different from σi
  (σ0,…,γi,…, σd) is a cell-tuple

30

C

A B

1

2 3

4

5 a

b

c

e

d
g

C

A B

1

2 3

4

5 a

b

c

e

d
g switch0(1,a,B)= (5,a,B)

C

A B

1

2 3

4

5 a

b

c

e

d
g

C

A B

1

2 3

4

5 a

b

c

e

d
g

switch2(1,a,B)= (1,a,C)

12/10/14

16

31

Cell-tuple data structure as a graph

  Cell tuples are represented as nodes of a labeled graph

  Each arc of the graph represents a switch operator

  The label (= 0, 1 or 2 in the 2D case) of an arc:
  index of the switch operator described by the arc

  For a 2-complex: # tuples (nodes) = 4*# edges and # arcs = 6* # edges

  Verbose representation

  All topological relations can be retrieved in optimal time

(1,a,B) (1,a,C)

1

1

1

2

2

2 2 0

0
0 0 A B

1

2 3

4

5 a

b
c

e

d
g

C

(1,b,B)

(5,a,B)

C

A B

1

2 3

4

5 a

b

c

e

d
g

32

  Retrieve boundary relation R2,0 (Face-Vertex relation) for a face σ

  Find a tuple containing σ	

  Let this be (v,e,σ), apply alternatively:
  switch0 (v,e,σ) = (v’,e,σ), which gives the other vertex of e
  switch1 (v,e,σ) = (v,e’,σ), which gives the other edge sharing vertex v and

face σ

  Time complexity: linear in the number of vertices face σ

Retrieving Topological Relations:
an Example

C

A B

1

2 3

4

5 a

b

c

e

d
g

1

1

1

2

2

2 2 0

0
0 0 A B

1

2 3

4

5 a

b
c

e

d
g

C
Example: retrieve R20(B) (Face-Vertex) starting from (5,a,B)

12/10/14

17

33

Cell-tuple Data Structure as a Graph

  Cell tuples are represented as nodes of a labeled
graph

  Each arc of the graph represents a switch operator

  In a 2-complex:

  for each tuple we have three switch operators

  # tuples (nodes) = 4*# edges

  # switch operators (arcs) = 6* # edges

  It tends to be a verbose representation

  All topological relations can be retrieved in optimal time
by applying sequences of switch operators, given a
starting tuple

C

A B

1

2 3

4

5 a

b

c

e

d
g

Generalized Maps (G-Maps)
[Lienhardt, 1988; 1994]

  Purely combinatorial objects
  Based on the concept of dart (corresponding to cell-

tuple)
  Each dart is formed by N+1 involutions (very similar

to switch operators)
  Domain: quasi-manifold complexes, a subclass of

pseudo-manifolds
  Very elegant implementations [Levy and Mallet, 1999]

34

12/10/14

18

Incidence Graph [Edelsbrunner, 1987]

  General: for arbitrary cell complexes

  Implementation of Hasse diagram

  All cells explicit encoded

  Immediate boundary (Rpp-1) and co-boundary (Rpp+1) relations
encoded for each p-cell

35

R2,1 (Face-Edge)
R1,2 (Edge-Face)

R1,0 (Edge-Vertex)
R0,1 (Vertex-Edge)

v1

v6

v3

v2

v4

v5

e7

e1

e2 e3

e4

e5

e6

e8

f1
f2

f3

e5 e4 e3 e2 e1 e6 e7 e8

f1 f2 f3

v5 v4 v3 v2 v1 v6

36

Incidence Graph: Retrieving a
Co-boundary Relation

v1

v6

v3

v2

v4

v5

e7

e1

e2 e3

e4

e5

e6

e8

f1
f2

f3

e5 e4 e3 e2 e1 e6 e7 e8

f1 f2 f3

v5 v4 v3 v2 v1 v6

Retrieving R0,2(v1) (Vertex-Face relation):
all faces incident at v1

f1 f2 f3

e5 e4 e3 e2 e1 e6 e7 e8

v5 v4 v3 v2 v1 v6

Retrieve edges
incident at v1

Retrieve faces
incident at edges
sharing v1

12/10/14

19

Incidence graph and implicit data structures

  Domain
  IG: arbitrary cell complexes

  Cell-tuple: manifold cell complexes
  G-maps: quasi-manifold complexes

  Cell-tuples/ G-maps
  paths in the incidence graph
  ordered models

  Encoding
  Cell tuples/G-maps as nodes of a labeled graph

  Arcs of the graph represent switch operators (dart for G-maps)

  G-maps more verbose than IG: IG/G-Maps ~50% in 2D; IG/G-Maps
~18% in 3D

37

Data structures for simplicial complexes

  Common requirements
 Domain: abstract simplicial complexes of arbitrary

dimension
 Dimension-independent design and implementation
 Scalable to manifolds
 Efficient support to both connectivity queries and

updates

  Conflicting requirements
 Explicit encoding of all simplices
 Compactness

38

12/10/14

20

Incidence Simplicial (IS) data structure
[DeFloriani et al., 2011]

  All simplices are explicitly encoded
  Simplified version of the Incidence Graph (IG)

Topological connectivity
  relation between an i-simplex and the (i-1)-simplices on

its boundary (as IG)

 minimal encoding of the local neighborhood (co-

boundary) of a simplex

39

e

v
f

IS data structure
an example for simplicial 3-complexes

  Boundary relations:
  Tetrahedron-Triangle

  Triangle-Edge
  Edge-Vertex

  Co-boundary relations as partial relations:
 Vertex-Edge: one edge for each connected component of the link

  Edge-Triangle: one triangle for each connected component of the
link

  Triangle-Tetrahedron: one tetrahedron for each connected
component of the link

40

e

v
f

12/10/14

21

Generalized IA (IA*) data structure
[Canino et al., 2011]

  Only vertices and top simplexes encoded
  Top simplexes: not on the boundary of any other simplex (e.g.,

in 3D: tetrahedra, dangling triangles and edges)

  Adjacency-based representation
  Extension of IA data structure

  Topological connectivity
  boundary relations from a top simplex and its

bounding vertices
  adjacency relations among top simplexes
 minimal encoding of the star of each vertex

41

4
σ	

3

2
1

t

IA* data structure:
an example for 3-complexes

  Only vertices and top simplexes (tetrahedra,
dangling triangles and edges)

  Vertex connectivity for top simplexes (Rk0 relations)

  Tetrahedron-Tetrahedron relation

  Triangle-Triangle and Edge-Edge relations for
dangling triangles and edges

  One simplex for each cluster of k-dimensional
simplexes incident at a vertex

42

4
σ	

3

2
1

12/10/14

22

IS vs IA* data structure

  Extended to quad and hexahedral meshes and more
  Storage cost

  IS: more compact than manifold edge-based (50-70%) and
facet-based (40-60%) data structures

  IA* more compact than IS (see next slide)

  IA*: 5% more compact than dimension-specific IAs

  Topological connectivity queries

  IA* more efficient than IS on boundary (30% less) and
vertex-based co-boundary queries (35% less)

43

Comparison on storage costs
44

Simplicial 2-complexes

Simplicial 3-complexes

12/10/14

23

Comparison on storage costs (2)
45

IG/IS behavior in detail

The Mangrove library

  Rapid prototyping of data structures for simplicial and cell
complexes
  flexible: graph-based representation (mangrove) for any data

structure
  easy to use: simple and concise set of primitives supported

  Multi-platform, written in C++
  Implementation of five data structures

  IS and IA* data structures

  Incidence Graph (IG)
  Two data structures specific for 2D and 3D simplicial complexes in 3D space

  Released as GPLv3 software at http://mangrovetds.sourceforge.net

46

12/10/14

24

The Mangrove library (2)

  Current version:
  arbitrary cell complexes (IG and IS data structures)

  IS and IA* for quad and hexahedral meshes
 Based on fixed cardinality of boundary relations

  Topological editing operators: under development
 homology-preserving and homology-modifying Euler

operators in arbitrary dimensions for cell complexes
  Operators for simplicial complexes:

 Stellar operators
 Face collapse
 Edge contraction

47

High-dimensional simplicial complexes
Data structures

  Simplex tree [Boissonnat and Maria, 2012]

  For abstract simplicial complexes of any dimension

  All simplexes explicitly stored in a trie
  Applications: construction of flag complexes and homology computation

  Tidy set [Zomorodian, 2010]

  For simplicial sets (obtained from abstract simplicial complexes)
  Dual graph representation of the complex:

  nodes = top simplexes ; arcs = their intersection
  Application: computing homology of flag complexes

  Blocker data structure [Attali et al., 2011]

  Simplicial complexes close to clique complexes
  Representation: 1-skeleton plus inclusion minimal simplexes

48

12/10/14

25

Towards localized data structures

  Bottleneck on future exascale computing shifts for
processing costs to memory access costs

  Moving to multi-core architectures
 Limiting factors: per-core memory size and bandwith

  Requirements are still:
  random-access traversal operators
 efficient updates

49

A spatio-topological approach
The PR-star octree [Weiss et al., 2011]

  “Topology through space”
  topological connectivity queries

through a spatial index on embedding space

  Efficient reconstruction of topological
relations
 optimal application dependent local data

structures to be generated at runtime

  Our approach (PR-star Octree)
  tetrahedral meshes
 generalizes to complexes in arbitrary

dimensions

50

12/10/14

26

The PR-star octree

  Strategy
 augment PR(Point-Region) octree (index on

the vertices of the mesh) with the tetrahedra
incident at its vertices

  Data structure
 global indexed representation of the mesh

(without adjacencies)
 an octree node indexes a contiguous range of

vertices and tetrahedra

51

The PR-star octree
Storage costs

  Topological overhead: 19% wrt compact indexed
representation with adjacencies (IA)

  Total cost: PR-star is 62% of IA

52

Vertex array

Tetrahedra array

Nodes of the octree

12/10/14

27

Applications of PR-star octree
General Strategy

  Iterate through octree nodes

  For each leaf octree node
 Step 1: Build application-dependent local data

structure
 Step 2: Process mesh locally
 Step 3: Discard local data structure

  Cost of building data structures is amortized over
multiple local operations

53

Applications of PR-star octree
Static and Dynamic

  Computing the star of a vertex:
  ~ 70% faster with PR-star than with IA

  cost amortized over a large portion of the mesh

  Mesh simplification (through edge contraction)
  similar simplification results in around the same amount of

time as IA
  1% of the memory

  Successfully applied to compute discrete Morse
complexes on tetrahedral meshes [Weiss et al.,
Eurovis2013] – 50% times faster than IA for Morse gradient
computation

Experiments performed on irregular and semi-regular data sets
containing up to 14 Millions of tetrahedra

54

