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NOISE AND SMOOTHING

• Polygonal meshes acquired through remote sensing 
techniques (e.g., range scanning) are affected by 
measurement noise	


• Noise produces artifacts in the form of details at high 
frequency, making the surface somehow “rough”	


• Smoothing techniques can be applied to attempt removing 
noise, thus making the surface smoother	


• Details cannot have a scale smaller than that of noise, and 
details at that scale are smoothed out together with noise
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NOISE AND SMOOTHING
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50 4. Smoothing

Figure 4.1. A 3D laser scan of a statue’s face on the left is corrupted by typical

measurement noise, which can be removed by low-pass filtering of the surface

geometry. On the right, the top row shows a close-up of the original mesh and

a color-coded visualization of its mean curvature. The bottom row depicts the

denoising result around the eye region.

minimized, typically involving curvatures or higher-order derivatives. We
will show that mesh fairing directly computes the limit surfaces of iterative
denoising processes, which illustrates the connection between these two
approaches.

4.1 Fourier Transform and Manifold Harmonics
The Fourier transform is the classic tool for analyzing a signal’s frequency
spectrum. It allows for e⇥cient implementations of low-pass filters and
more general convolution filters. We will first consider low-pass filtering of
simple univariate functions f(x) based on the Fourier transform, and then
generalize these concepts to signal processing on triangle meshes.

4.1.1 1D Fourier Transform
The Fourier transform maps a univariate function f : IR � C from its
representation f(x) in the spatial domain to its representation F (�) in the
frequency domain. This transformation and its inverse can be written as

F (�) =

� ⇥

�⇥
f(x) e�2�i⇥x dx, (4.1)

f(x) =

� ⇥

�⇥
F (�) e2�i⇥x d�. (4.2)



NOISE AND SMOOTHING

• The mesh can be viewed as a two-dimensional vector signal 
defined over a manifold:	

!

!

where xi denotes the position of vertex vi in space and f is 
extended by linear interpolation to the rest of the mesh	


• Under a signal-processing point of view, smoothing can be 
viewed as a filtering process of the signal f
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f : M �! R3 f(vi) = xi



DIFFUSION FLOW

• We consider the diffusion equation (a.k.a. heat equation) 
describing the evolution of a signal over time	

!

!

• A function f obeying to the above equation becomes 
smoother and smoother for increasing values of t 

• f (x,0) is the function at its initial state	

• parameter λ sets the speed at which the function is smoothed
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⇥f(x, t)

⇥t
= ��f(x, t)



DIFFUSION FLOW

• widely used to blur 
images and smooth 
terrain surfaces	


• build a scale space 
describing the 
evolution of data 
through time under 
the blurring/smoothing 
process
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Diffusion

• Diffusion equation

�

�t
x = µ�x

diffusion constant

Laplace operator

t



DIFFUSION FLOW

• the diffusion equation is a Partial Differential Equation	

• we discretize it both in space and in time:	


• sample f at mesh vertices:	

• divide time in discrete steps of uniform width h 
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�f(vi, t)

�t
⇡ f(vi, t+ h)� f(vi, t)

h

f(t) = (f(v1, t), . . . , f(vn, t))
T



DIFFUSION FLOW

• We obtain a system of n equations:	

!

!

• In matrix notation:	

!

!

where L is the Laplacian matrix
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f(vi, t+ h) = f(vi, t) + h��f(vi, t)

f(t+ h) = f(t) + h�Lf(t)



DIFFUSION FLOW

• Explicit Euler integration: resolve the system by iterative 
substitution for small time step h	

!

• Implicit Euler integration: resolve the following linear system	

!

the system is very large but sparse
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f(t+ h) = f(t) + h�Lf(t)

(I� h�L)f(t+ h) = f(t)



DIFFUSION FLOW

• Smoothing is performed by applying the method to the 
function x of coordinates of vertices 	


• With explicit integration: 	

• with the correct Laplace-Beltrami operator:	


vertices move in their normal direction by an amount 
proportional to the mean curvature	


• With the uniform Laplacian (umbrella), vertices move towards 
the barycenter of their neighbors (Laplacian smoothing)
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xi  xi + h��xi

�x = �2Hn



DIFFUSION FLOW
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Curvature Flow

• Mean curvature flow

– use discrete Laplace-Beltrami operator (cot weights)

• Compare to uniform discretization of Laplacian

Umbrella

Laplace-Beltrami

tangential drift

vertices move only
along normal

�

�t
p = µ�Sp
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Comparison

Original Umbrella Laplace-Beltrami



DIFFUSION FLOW

• Higher order diffusion flow can be used to achieve better results: 	

!

where	

•  In the discrete case: 	

• The Laplacian matrix becomes less sparse at each next power, 

yielding higher computational cost	

• Bi-Laplacian smoothing (k=2) is a good compromise between 

computational efficiency and smoothing quality
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⇥f(x, t)

⇥t
= ��kf(x, t)

�kf = �(�k�1f)

�kf = Lkf



FAIRING

• Fairing has the purpose to compute surfaces that are as smooth as 
possible	


• Actual measure of smoothness depends on application	

• Principle of simplest shape: the surface should be free of any 

unnecessary details or oscillations	

• General method: 	


• fixed topology	

• boundary constraints (fixed position for vertices at the boundary)	

• minimize an energy depending on the position of vertices
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FAIRING
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Motivation

• Fair Surface Design

Mark Pauly

Motivation

• Hole-filling with energy-minimizing patches
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FAIRING

• Membrane energy: measures area	

!

!

highly non-linear, thus difficult to minimize	

• Surrogate (linearization): Dirichlet energy	


!

15

EM (x) =

ZZ

⌦

p
det(I)dudv

ẼM (x) =

ZZ

�
||xu||2 + ||xv||2dudv



FAIRING

• Minimization of energy functional is studied with calculus of variations	


• It can be proved that the Dirichlet energy is minimized by the 
function that satisfies the Laplace equation:	

!

• Boundary conditions fix the position of some of the unknowns 
• The system is sparse and, under suitable manipulations, symmetric 

and positive definite	

• Efficient solvers can be used (e.g., cholmod)
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Lx = 0



FAIRING

• Thin-plate energy: measures curvature	

!

!

• Linearization:	

!

!

• Solved by the bi-Laplacian system:	
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ETP (x) =

ZZ

�
�2
1 + �2

2 dudv

ẼTP (x) =

ZZ

�
||xuu||2 + 2||xuv||2 + |xvv||2 dudv

L

2
x = 0



FAIRING

• Higher-order energy measuring variation of curvature	

!

!

!

• can be also linearized and solved by the tri-Laplacian system:	
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ETP (x) =

ZZ

�

✓
⇥�1

⇥t1

◆2

+

✓
⇥�2

⇥t2

◆2

dudv

L

3
x = 0



FAIRING
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Energy Functionals

Membrane
�Sp = 0 Thin Plate

�2
Sp = 0

�3
Sp = 0
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RELATION BETWEEN FAIRING 
AND DIFFUSION FLOW

• A fair surface satisfying               is a steady state for the flow	

!

!

• Thus, fair surfaces are as smooth as possible	


• Explicit integration of the Laplacian flow is equivalent to one 
Jacobi iteration to solve the related Laplace equation
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L

k
x = 0

⇥f(x, t)

⇥t
= ��kf(x, t)


