MESH SMOOTHING AND
-AIRING
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NOISE AND SMOOTHING

* Polygonal meshes acquired through remote sensing
techniques (e.g., range scanning) are affected by
measurement noise

* Noise produces artifacts in the form of details at high
frequency, making the surface somehow “rough”

» Smoothing techniques can be applied to attempt removing
noise, thus making the surface smoother

« Detalls cannot have a scale smaller than that of noise, and
detalls at that scale are smoothed out together with noise
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NOISE AND SMOOTHING

* The mesh can be viewed as a two-dimensional vector signal
defined over a manifold:

i 8 = I fvs) =%,

where X; denotes the position of vertex v; in space and f'is
extended by linear interpolation to the rest of the mesh

» Under a signal-processing point of view, smoothing can be
viewed as a filtering process of the signal f
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DIFFUSION FLOW

* We consider the diffusion equation (a.k.a. heat equation)
describing the evolution of a signal over time

0f (x,1)
ot

* A function f obeying to the above equation becomes
smoother and smoother for increasing values of ¢

e AAf(Xa t)

* 1(x,0) Is the function at its inrtial state

* parameter A sets the speed at which the function Is smoothed
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DIFFUSION

* widely used to blur
images and smooth
terrain surfaces

* build a scale space
describing the
evolution of data
through time under
the blurring/smoothing
process



DIFFUSION FLOW

- the diffusion equation is a Partial Differential Equation
- we discretize it both in space and In time:
- sample fat mesh vertices:  £(¢) = (f(v1,t),..., f(vn,t))"

* divide time in discrete steps of uniform width /4

Oilemall s ) Wt

([ %4

ot h




DIFFUSION FLOW

- We obtain a system of n equations:

* |In matrix notation:

£(t + h) = £(t) - RALE(?)

where L is the Laplacian matrix
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DIFFUSION FLOW

* Explicit Euler integration: resolve the system by iterative
substitution for small time step /4

f(t+h)="£(t)+ hALf(?)
* Implicit Euler integration: resolve the following linear system
(I — RAL)E(t 4+ h) = £(F)

the system Is very large but sparse



DIFFUSION FLOW

* Smoothing Is performed by applying the method to the
function x of coordinates of vertices

* With explicit integration:  x; < x; + hAAX;
» with the correct Laplace-Beltrami operator: Ax = —2Hn

vertices move In their normal direction by an amount
proportional to the mean curvature

* With the uniform Laplacian (umbrella), vertices move towards
the barycenter of their neighbors (Laplacian smoothing)
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IFFUSION

Original Umbrella L aplace-Beltrami

Umbrella

Laplace-Beltrami




DIFFUSION FLOW

* Higher order diffusion flow can be used to achieve better results:

8f(X7 t) s k
vee AAZ G

where AFf = A(A*! f)
» In the discrete case: AFf =L%f

* [he Laplacian matrix becomes less sparse at each next power,
yielding higher computational cost

* Bi-Laplacian smoothing (k=2) I1s a good compromise between
computational efficiency and smoothing quality
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-AIRING

» Fairing has the purpose to compute surfaces that are as smooth as
possible

» Actual measure of smoothness depends on application

» Principle of simplest shape: the surface should be free of any
unnecessary details or oscillations

« General method:

- fixed topology

» boundary constraints (fixed position for vertices at the boundary)

* minimize an energy depending on the position of vertices
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-AIRING

- Membrane energy. measures area

— / . v/ det(I)dudv

highly non-linear, thus difficult to minimize

» Surrogate (linearization): Dirichlet energy

/ / a2 + |60 | [2dudo



-AIRING

» Minimization of energy functional is studied with calculus of variations

- It can be proved that the Dirichlet energy i1s minimized by the
function that satisfies the Laplace equation:

Lx=0
 Boundary conditions fix the position of some of the unknowns

* The system Is sparse and, under surtable manipulations, symmetric
and positive definite

- Efficient solvers can be used (e.g., cholmod)



-AIRING

Thin-plate energy: measures curvature

Erp(x // /431 + /{2 dudv
* Linearization:

. / %l 12 + 2l1xunll? + [xo0l? dudv

» Solved by the bi-Laplacian system: L*x =0



-AIRING

* Higher-order energy measuring variation of curvature

8/431 | (9/{2 2
Erp(x // <8t1> ((%2) dudv

* can be also linearized and solved by the tri-Laplacian system:

I3x =0



-AIRING

Membrane

Asp =0 Thin Plate
Azp =0




RELATION BETWEEN FAIRING
AND DIFFUSION FLOW

+ A fair surface satisfying L*x = 0 is a steady state for the flow

af(Xa t) ki k
e VAN )

* Thus, fair surfaces are as smooth as possible

* Explicit integration of the Laplacian flow Is equivalent to one
Jacobi iteration to solve the related Laplace equation
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