POLYGONAL MESHES
 Lecture 3

WHAT IS A MESH?

A surface made of polygonal faces glued at common edges

ORIGIN OF MESHES

- In nature, meshes arise in a variety of contexts:
-Cells in organic tissues
-Crystals
-Molecules
—...
-Common concept: complex shapes can be described as collections of simple building blocks

ORIGIN OF MESHES

- In math, meshes come from algebraic topology:
-A manifold is decomposed into a collection of simple cells (each homeomorphic to a disc)
-Properties of the manifold are studied by analyzing the structure of the resulting cell complex
-Both simplicial and hypercubic complexes may be used (for surfaces: tris and quads)

BASIC MATH OF MESHES

- A n-cell is a set homeomorphic to a Euclidean disc of dimension n :
- 0-cell: vertex ν
- | -cell: edge

$$
[0,1] \rightarrow / e
$$

- 2-cell: face

STRUCTURE OF MESHES

- A mesh $M=(V, E, F)$ of dimension 2 is made of a collection of k-cells for $k=0,1,2$:
- 0-cells of V lie on the boundary of I-cells of E
- I-cells of E lies on the boundary of 2-cells of F
- (manifoldness) each I-cell of E lies on the boundary of either one or two 2-cells of F

- the intersection of two distinct I- / 2-cells is either empty or it coincides with a collection of 0- / | -cells

STRUCTURE OF MESHES

- Properties 1. and 2. guarantee that there are no "dangling" edges and isolated vertices
- Property 3. guarantees that faces abut properly
- Property 2.1 extends property 2 . to guarantee that the carrier of the mesh (i.e., the union of all its cells) is a manifold (i.e., a surface)

STRUCTURE OF MESHES

Forbidden configurations:

- Dangling edges and isolated vertices
- Intersecting faces
- Non-conforming adjacency
- Non-manifold edges

STRUCTURE OF MESHES

- A mesh can be treated as a purely combinatorial structure

$$
M=(V, E, F)
$$

- For some applications, geometry of edges and faces it not relevant. Just encode:
- vertices as singletons (V)
- how vertices are connected among them (E)
- how cycles of vertices bound faces (F)

STRUCTURE OF MESHES

- Geometric embedding:
-position in space for each 0-cell (vertex - point)
-geometry for each I -cell (edge - line) and 2-cell (face - disk-like surface)
- Polygonal meshes are embedded:
-edges are straight-line segments
-are faces flat? not always true: vertices of a face might be not coplanar

TRIANGLE MESHES

- A triangle mesh is a polygonal mesh with all triangular faces
- all faces are flat (there exist a unique plane for three points)
- All cells are simplices, i.e., they are the convex combinations of their vertices

$$
P=\lambda_{0} V_{0}+\lambda_{1} V_{1}+\lambda_{2} V_{2} \quad \lambda_{i} \in[0,1] \quad \lambda_{0}+\lambda_{1}+\lambda_{2}=1
$$

- embedding of vertices + combinatorial structure characterize the embedding of the whole mesh

EULER-POINCARÉ FORMULA

- Relates the number of cells in a mesh with the genus of the surface it represents:

$$
v-e+f=2-2 g-h
$$

- Genus $g=\#$ handles (ex.: sphere: genus 0; torus: genus I)
- Holes $h=$ \# boundary loops (watertight: no boundary)

EULER-POINCARÉ FORMULA

- In a (watertight manifold) triangle mesh:
- each face has three edges, each edge is shared by two faces:
- $2 e=3 f$
- $e=3 v+6 g-6 \approx 3 v$
- $f=2 v+4 g-4 \approx 2 v$
- The formula can be adapted to bordered surfaces to take into account boundary loops and edges

TOPOLOGICAL RELATIONS

\author{

- boundary
 - co-boundary
 - adjacency
}

VERTEX-BASED RELATIONS

- VE (Vertex-Edge):
- for each vertex v, the list of edges ($\mathrm{e}_{1, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{r}} \text {) }}$ having an endpoint in v (incident edges) arranged in counter-clockwise radial order around v
- list is circular: initial vertex $e_{\text {I }}$ is arbitrarily chosen

VERTEX-BASED RELATIONS

- WV (Vertex-Vertex):
- for each vertex v , the list of vertices $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}\right)$ connected to \vee with an edge (adjacent vertices) arranged in counter-clockwise radial order around v
- consistency rule: vertex v_{i} in $\mathrm{W}(\mathrm{v})$ is an endpoint of edge ei in $V E(v)$

VERTEX-BASED RELATIONS

- VF (Vertex-Face):
- for each vertex v, the list of faces $\left(f_{1}, f_{2}, \ldots, f_{r}\right)$ having v on their boundary (incident faces) arranged in counter-clockwise radial order around v
- consistency rule: face f_{i} in $\mathrm{VF}(\mathrm{V})$ is bounded by edges e_{i} and e_{i+1} in $V E(v)$

EDGE-BASED RELATIONS

- EV (Edge-Vertex):
- for each edge e, the two endpoints $\left(v_{1}, v_{2}\right)$ of e (incident vertices)
- EF (Edge-Face):
- for each edge e, the two faces $\left(f_{1}, f_{2}\right)$ having e on their boundary (incident faces)
- Consistency rule: face $f_{1}\left[f_{2}\right]$ is on the left [right] of the oriented line from v_{1} to v_{2}

EDGE-BASED RELATIONS

- EE (Edge-Edge):
- for each edge e, two pairs of edges $\left(\left(e_{1}, e_{2}\right),\left(e_{3}, e_{4}\right)\right)$ that share a vertex and a face with e (adjacent edges)
- Consistency rule:
- $e_{\text {। }}$ is incident on $v_{\text {I }}$ and f_{1}
- e_{2} is incident on v_{1} and f_{2}
- e_{3} is incident on v_{2} and f_{1}
- e_{4} is incident on v_{2} and f_{2}

FACE-BASED RELATIONS

- FE (Face-Edge):
- for each face f , the list ($\mathrm{e}_{\left.\stackrel{\prime}{ }, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{m}}\right) \text { of edges of }}$ its boundary (incident edges), in counterclockwise order about f
- list is circular: initial vertex e^{\prime} is arbitrarily chosen

FACE-BASED RELATIONS

- FV (Face-Vertex):
- for each face f, the list $\left(v_{1}, V_{2}, \ldots, v_{m}\right)$ of vertices of its boundary (incident vertices), in counterclockwise order about f
- consistency rule: edge ei in FE(f) has endpoints v_{i} and v_{i+1}

FACE-BASED RELATIONS

- FF (Face-Face):
- for each face f, the list ($f_{1}, f_{2}, \ldots, f_{m}$) of faces that share an edge with f (adjacent faces), in counter-clockwise order about f
- consistency rule: face f_{i} in FF(f) shares edge e_{i} in FE(f)

TOPOLOGICAL RELATIONS

- Constant relations return a constant number of elements:
- EV (each edge has two endpoints)
- EE (each edge has four adjacent edges)
- EF (each edge has two incident faces)
- Variable relations return a variable number of elements:
- VV,VE, VF, FV, FE, FF: the number of vertices/edges/faces incident/ adjacent to a given vertex/face is not constant and it can be of the same order of the total number of vertices/edges/faces

STARS AND RINGS

- The star of a vertex v is formed by v plus the set of cells incident at \vee (edges and faces of its co-boundary)

- The star of an edge e is formed by e plus the set of faces incident at e (faces of its co-boundary)

- The I-ring of a face f is the formed by the union of the stars of its boundary vertices
- The k-ring of a face f, for $k>\mid$ is the formed by the union of the 1 -rings of faces in its $(k-1)$-ring

EDITING OPERATIONS

- Mesh processing requires editing operations to change both the geometry and the connectivity of meshes
- Editing based on primitive operations that warrant consistency of meshes:

consistent mesh $M \rightarrow$ editing op. \rightarrow consistent mesh M^{\prime}

- Consistency is important for the implementation on data structures

EULER OPERATORS

- for general polygonal meshes
- inherited from geometric modeling
- always fulfill the Euler formula $v-e+f=2 s-2 g-h$
- not closed on meshes: intermediate results can be not meshes
- require more general data structures

EULER OPERATORS

- Examples:
-MVS - MakeVertexShell: creates a new connected component composed of a single vertex
- MEV - MakeEdgeVertex: creates a new vertex and a new edge, joining it to an existing vertex
- MEF - MakeEdgeFace: connects two existing vertices with an edge creating a new face - this can either make and fill a loop, or split an existing face into two
- KHMF - KillHoleMakeFace: fills a hole loop with a face
-

OPERATORS FOR TRIANGLE MESHES

- Specific operators that are closed on triangle meshes: triangle mesh $M \rightarrow$ editing op. \rightarrow triangle mesh M^{\prime}
- Refinement operators: produce a mesh with more vertices/ edges/faces
- Simplification operators: produce a mesh with less vertices/ edges/faces
- Can be implemented on any topological data structure for triangle meshes

REFINEMENT OPERATORS

- Triangle split:
- insert a new vertex v in a triangle t and connect v to the vertices of t by splitting it into three triangles

Note: this is possible on general meshes with star-shaped faces

- a.k.a. starring

REFINEMENT OPERATORS

- Edge split:
- insert a new vertex v on an edge e and connect v to the opposite vertices of triangles incident at e by splitting e as well as each such triangle into two

REFINEMENT OPERATORS

- Vertex split:
- cut open the mesh along two edges e। and e2 incident at a common vertex v, by duplicating such edges as well as v

REFINEMENT OPERATORS

- Vertex split:
- cut open the mesh along two edges e_{1} and e_{2} incident at a common vertex v, by duplicating such edges as well as v
- fill the quadrangular hole with two new triangles and an edge joining the two copies of v

REFINEMENT OPERATORS

- Vertex split:
- possible inconsistencies because of triangle flip

- flips can be detected by a local test on the orientation of faces: flips changes orientation from clockwise to counter-clockwise and viceversa

SIMPLIFICATION OPERATORS

- Edge collapse (reverse of vertex split):
- collapse an edge e to a single point
- e is removed together with its two incident triangles
- the endpoints of e are identified
- the other edges bounding the deleted triangles are pairwise identified

SIMPLIFICATION OPERATORS

- Edge collapse:
- possible inconsistencies because of triangle flip

- consistency check analogous to vertex split

SIMPLIFICATION OPERATORS

- Edge merge (reverse of edge split):
- take an internal vertex v with valence 4
- delete v together with its incident triangles and edges and fill the hole with two new triangles sharing a new edge e

SIMPLIFICATION OPERATORS

- Edge merge:
- if the hole is not convex, only one diagonal edge can be inserted

SIMPLIFICATION OPERATORS

- Delete vertex (reverse of triangle split):
- remove an internal vertex v of valence 3 together with its incident triangles and edges and fille the hole with a new triangle

NEUTRAL OPERATOR

- Edge swap:
- consider an edge e such that its two incident triangles form a convex quadrilateral
- replace e with the opposite diagonal of the quadrilateral, rearranging the two incident triangles accordingly

BOUNDARY CASES

- Triangle split / Delete vertex:

- Edge split / Edge merge:

- Edge swap: NO

BOUNDARY CASES

- Vertex split / Edge collapse:

BOUNDARY CASES

- Edge merge on a convex boundary may cause inconsistencies if the quadrilateral formed from the two triangles that merge is not convex
- local check

BOUNDARY CASES

- Edge merge on a concave boundary may cause self-intersection of the mesh
- global check! intersecting parts may be far on the mesh

- similar problems with edge collapse on concave boundary and vertex split on convex boundary

