
POLYGONAL MESHES
Lecture 3

WHAT IS A MESH?
A surface made of polygonal
faces glued at common edges

2

• In nature, meshes arise in a variety of contexts:	

–Cells in organic tissues	

–Crystals	

–Molecules	

–…	

–Mostly convex but irregular cells	

–Common concept: complex shapes can be described as collec/ons of simple	
building	 blocks	

ORIGIN OF MESHES

ORIGIN OF MESHES

• In math, meshes come from algebraic topology:	

–A manifold is decomposed into a collection of
simple cells	 (each homeomorphic to a disc)	

–Properties of the manifold are studied by
analyzing the structure of the resulting cell	
complex 	

–Both simplicial and hypercubic complexes may
be used (for surfaces: tris and quads)

BASIC MATH OF MESHES

• A n-cell	 is a set homeomorphic to a Euclidean
disc of dimension n:	

• 0-cell: vertex	

• 1-cell: edge [0,1]→

!

• 2-cell: face

f

v

e

f’

STRUCTURE OF MESHES
•A mesh M=(V,E,F)	 of dimension 2 is made of a

collection of k-‐cells for k	 = 0, 1, 2:	

• 0-cells of V	 lie on the boundary of 1-cells of E	

• 1-cells of E	 lies on the boundary of 2-cells of F

• (manifoldness) each 1-cell of E lies on the
boundary of either one or two 2-cells of F	

• the intersection of two distinct 1- / 2-cells is
either empty or it coincides with a collection of
0- / 1-cells

v1
e

v0

f

v1

v2

v0

e0

e1

e2

ef0 f1

STRUCTURE OF MESHES

• Properties 1. and 2. guarantee that there are no “dangling”
edges and isolated vertices	

• Property 3. guarantees that faces abut properly	

• Property 2.1 extends property 2. to guarantee that the
carrier of the mesh (i.e., the union of all its cells) is a
manifold (i.e., a surface)

STRUCTURE OF MESHES

Forbidden configurations:	

• Dangling edges and isolated vertices	

• Intersecting faces	

• Non-conforming adjacency	

• Non-manifold edges

STRUCTURE OF MESHES
• A mesh can be treated as a purely combinatorial structure 	

M = (V,E,F)

• For some applications, geometry of edges and faces it not
relevant. Just encode:	

• vertices as singletons (V)	

• how vertices are connected among them (E)	

• how cycles of vertices bound faces (F)

STRUCTURE OF MESHES

• Geometric embedding:	

–position in space for each 0-cell (vertex - point)	

–geometry for each 1-cell (edge - line) and 2-cell (face - disk-like
surface)	

• Polygonal meshes are embedded:	

–edges are straight-line segments	

–are faces flat? not always true: vertices of a face might be not	 coplanar

TRIANGLE MESHES

• A triangle mesh is a polygonal mesh with all triangular faces	

• all faces are flat (there exist a unique plane for three points)	

• All cells are simplices, i.e., they are the convex combinations of
their vertices	

P = λ0V0 + λ1V1 + λ2V2 λi∈[0,1] λ0 + λ1 + λ2 = 1

• embedding of vertices + combinatorial structure
characterize the embedding of the whole mesh

V2

V0

V1

P

EULER-POINCARÉ FORMULA

• Relates the number of cells in a mesh with the genus of the
surface it represents:	

v-e+f = 2-2g -h

• Genus g = # handles (ex.: sphere: genus 0; torus: genus 1)	

• Holes h = # boundary loops (watertight: no boundary)

EULER-POINCARÉ FORMULA

• In a (watertight manifold) triangle mesh:	

•each face has three edges, each edge is shared by two faces:	

• 2e = 3f

• e = 3v + 6g - 6 ≈ 3v

• f = 2v + 4g - 4 ≈ 2v

• The formula can be adapted to bordered surfaces to take into
account boundary loops and edges

13

TOPOLOGICAL RELATIONS

V

E F

boundary	

co-boundary	

adjacency

VERTEX-BASED RELATIONS

• VE (Vertex-Edge):	

• for each vertex v, the list of edges (e1,e2,...,er)
having an endpoint in v (incident edges)
arranged in counter-clockwise radial order
around v	

• list is circular : initial vertex e1 is arbitrarily
chosen

VERTEX-BASED RELATIONS

• VV (Vertex-Vertex):	

• for each vertex v, the list of vertices (v1,v2,...,vr)
connected to v with an edge (adjacent
vertices) arranged in counter-clockwise radial
order around v	

• consistency rule: vertex vi in VV(v) is an
endpoint of edge ei in VE(v)

VERTEX-BASED RELATIONS

• VF (Vertex-Face):	

• for each vertex v, the list of faces (f1,f2,...,fr)
having v on their boundary (incident faces)
arranged in counter-clockwise radial order
around v	

• consistency rule: face fi in VF(v) is bounded by
edges ei and ei+1in VE(v)

EDGE-BASED RELATIONS

• EV (Edge-Vertex):	

• for each edge e, the two endpoints (v1,v2) of e
(incident vertices)	

• EF (Edge-Face):	

• for each edge e, the two faces (f1,f2) having e on
their boundary (incident faces)	

• Consistency rule: face f1 [f2] is on the left [right] of
the oriented line from v1 to v2

EDGE-BASED RELATIONS

• EE (Edge-Edge):	

• for each edge e, two pairs of edges ((e1,e2), (e3,e4))
that share a vertex and a face with e (adjacent
edges)	

• Consistency rule:	

• e1 is incident on v1 and f1 	

• e2 is incident on v1 and f2 	

• e3 is incident on v2 and f1 	

• e4 is incident on v2 and f2

FACE-BASED RELATIONS

• FE (Face-Edge):	

• for each face f, the list (e1,e2,...,em) of edges of
its boundary (incident edges), in counter-
clockwise order about f	

• list is circular : initial vertex e1 is arbitrarily
chosen

FACE-BASED RELATIONS

• FV (Face-Vertex):	

• for each face f, the list (v1,v2,...,vm) of vertices
of its boundary (incident vertices), in counter-
clockwise order about f	

• consistency rule: edge ei in FE(f) has
endpoints vi and vi+1

FACE-BASED RELATIONS

• FF (Face-Face):	

• for each face f, the list (f1,f2,...,fm) of faces that
share an edge with f (adjacent faces), in
counter-clockwise order about f	

• consistency rule: face fi in FF(f) shares edge ei
in FE(f)

TOPOLOGICAL RELATIONS

• Constant relations return a constant number of elements:	

• EV (each edge has two endpoints)	

• EE (each edge has four adjacent edges)	

• EF (each edge has two incident faces)	

• Variable relations return a variable number of elements:	

• VV, VE, VF, FV, FE, FF: the number of vertices/edges/faces incident/
adjacent to a given vertex/face is not constant and it can be of the
same order of the total number of vertices/edges/faces

23

STARS AND RINGS

• The star of a vertex v is formed by v plus the set of
cells incident at v (edges and faces of its co-boundary)	

• The star of an edge e is formed by e plus the set of
faces incident at e (faces of its co-boundary)	

• The 1-ring of a face f is the formed by the union of
the stars of its boundary vertices	

• The k-ring of a face f, for k>1 is the formed by the
union of the 1-rings of faces in its (k-1)-ring

24

EDITING OPERATIONS

•Mesh processing requires editing operations to change both
the geometry and the connectivity of meshes	

•Editing based on primitive operations that warrant
consistency of meshes:	

consistent mesh M → editing op. → consistent mesh M’	

•Consistency is important for the implementation on data
structures

25

EULER OPERATORS

•for general polygonal meshes	

• inherited from geometric modeling	

•always fulfill the Euler formula v - e + f = 2s - 2g - h 	

•not closed on meshes: intermediate results can be not meshes	

• require more general data structures

26

EULER OPERATORS

•Examples:	

•MVS - MakeVertexShell: creates a new connected component composed

of a single vertex	

•MEV - MakeEdgeVertex: creates a new vertex and a new edge, joining it

to an existing vertex	

•MEF - MakeEdgeFace: connects two existing vertices with an edge

creating a new face - this can either make and fill a loop, or split an
existing face into two	

•KHMF - KillHoleMakeFace: fills a hole loop with a face	

•

27

OPERATORS FOR TRIANGLE
MESHES

•Specific operators that are closed on triangle meshes:	

triangle mesh M → editing op. → triangle mesh M’	

•Refinement operators: produce a mesh with more vertices/

edges/faces	

•Simplification operators: produce a mesh with less vertices/

edges/faces	

•Can be implemented on any topological data structure for

triangle meshes
28

REFINEMENT OPERATORS

• Triangle split:	

• insert a new vertex v in a triangle t and connect v to the
vertices of t by splitting it into three triangles	

!

!

!

Note: this is possible on general meshes with star-shaped faces
- a.k.a. starring

29

t v

REFINEMENT OPERATORS

• Edge split:	

• insert a new vertex v on an edge e and connect v to the
opposite vertices of triangles incident at e by splitting e as
well as each such triangle into two

30

e v

REFINEMENT OPERATORS

31

v
e

e
vʹ′

e1ʹ′
e2ʹ′ʹ′

e1ʹ′ʹ′

e2ʹ′

vʹ′ʹ′

• Vertex split:	

• cut open the mesh along two edges e1 and e2 incident at a common
vertex v, by duplicating such edges as well as v	

• Vertex split:	

• cut open the mesh along two edges e1 and e2 incident at a common
vertex v, by duplicating such edges as well as v	

• fill the quadrangular hole with two new triangles and an edge joining the
two copies of v

v’

e1
e2ʹ′ʹ′

e1ʹ′ʹ′

e2

vʹ′ʹ′

e
t2

t1

vʹ′
e1ʹ′e2ʹ′ʹ′

e1ʹ′ʹ′

e2ʹ′

vʹ′ʹ′

REFINEMENT OPERATORS

32

• Vertex split:	

• possible inconsistencies because of triangle flip	

!

!

!

!

!

• flips can be detected by a local test on the orientation of faces: flips
changes orientation from clockwise to counter-clockwise and vice-
versa

REFINEMENT OPERATORS

33

• Edge collapse (reverse of vertex split):	

• collapse an edge e to a single point	

• e is removed together with its two incident triangles 	

• the endpoints of e are identified	

• the other edges bounding the deleted triangles are pairwise

identified	

!

!

SIMPLIFICATION OPERATORS

34

v’

vʹ′ʹ′
e

t2
t1

v
e1

e2

• Edge collapse:	

• possible inconsistencies because of triangle flip	

!

!

!

!

• consistency check analogous to vertex split

SIMPLIFICATION OPERATORS

35

• Edge merge (reverse of edge split):	

• take an internal vertex v with valence 4	

• delete v together with its incident triangles and edges and fill

the hole with two new triangles sharing a new edge e

SIMPLIFICATION OPERATORS

36

ev

• Edge merge:	

• if the hole is not convex, only one diagonal edge can be
inserted

SIMPLIFICATION OPERATORS

37

Yes

No!

• Delete vertex (reverse of triangle split):	

• remove an internal vertex v of valence 3 together with its
incident triangles and edges and fille the hole with a new
triangle

SIMPLIFICATION OPERATORS

38

tv

• Edge swap:	

• consider an edge e such that its two incident triangles form a
convex quadrilateral	

• replace e with the opposite diagonal of the quadrilateral,
rearranging the two incident triangles accordingly

NEUTRAL OPERATOR

39

e e’

• Triangle split / Delete vertex:	

!

!

• Edge split / Edge merge:	

!

!

• Edge swap: NO

BOUNDARY CASES

40

• Vertex split / Edge collapse:

BOUNDARY CASES

41

• Edge merge on a convex boundary may cause inconsistencies if
the quadrilateral formed from the two triangles that merge is not
convex	

• local check

BOUNDARY CASES

42

• Edge merge on a concave boundary may cause self-intersection of
the mesh	

• global check! intersecting parts may be far on the mesh	

!

!

!

!

• similar problems with edge collapse on concave boundary and
vertex split on convex boundary

BOUNDARY CASES

43

