
POLYGONAL MESHES
Lecture 3



WHAT IS A MESH?
A surface made of polygonal 
faces glued at common edges

2



• In nature, meshes arise in a variety of contexts:	


–Cells in organic tissues	


–Crystals	


–Molecules	


–…	


–Mostly convex but irregular cells	


–Common concept: complex shapes can be described as collec/ons of simple	  
building	  blocks	  

ORIGIN OF MESHES



ORIGIN OF MESHES

• In math, meshes come from algebraic topology:	


–A manifold is decomposed into a collection of 
simple cells	  (each homeomorphic to a disc)	


–Properties of the manifold are studied by 
analyzing the structure of the resulting cell	  
complex 	


–Both simplicial and hypercubic complexes may 
be used (for surfaces: tris and quads)



BASIC MATH OF MESHES

• A n-cell	  is a set homeomorphic to a Euclidean 
disc of dimension n:	


• 0-cell: vertex	


• 1-cell: edge                   [0,1]→ 

!

• 2-cell: face
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STRUCTURE OF MESHES
•A mesh M=(V,E,F)	  of dimension 2 is made of a 

collection of k-‐cells for k	  = 0, 1, 2:	


• 0-cells of V	  lie on the boundary of 1-cells of E	


• 1-cells of E	  lies on the boundary of 2-cells of F 

• (manifoldness) each 1-cell of E lies on the 
boundary of either one or two 2-cells of F	


• the intersection of two distinct 1- / 2-cells is 
either empty or it coincides with a collection of 
0- / 1-cells
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STRUCTURE OF MESHES

• Properties 1. and 2. guarantee that there are no “dangling” 
edges and isolated vertices	


• Property 3. guarantees that faces abut properly	


• Property 2.1 extends property 2. to guarantee that the 
carrier of the mesh (i.e., the union of all its cells) is a 
manifold (i.e., a surface) 



STRUCTURE OF MESHES

Forbidden configurations:	


• Dangling edges and isolated vertices	


• Intersecting faces	


• Non-conforming adjacency	


• Non-manifold edges



STRUCTURE OF MESHES
• A mesh can be treated as a purely combinatorial structure 	


M = (V,E,F) 

• For some applications, geometry of edges and faces it not 
relevant. Just encode:	


• vertices as singletons (V)	


• how vertices are connected among them (E)	


• how cycles of vertices bound faces (F)



STRUCTURE OF MESHES

• Geometric embedding:	


–position in space for each 0-cell (vertex - point)	


–geometry for each 1-cell (edge - line) and 2-cell (face - disk-like 
surface)	


• Polygonal meshes are embedded:	


–edges are straight-line segments	


–are faces flat? not always true: vertices of a face might be not	  coplanar



TRIANGLE MESHES

• A triangle mesh is a polygonal mesh with all triangular faces	


• all faces are flat (there exist a unique plane for three points)	


• All cells are simplices, i.e., they are the convex combinations of 
their vertices	


P = λ0V0 + λ1V1 + λ2V2       λi∈[0,1]      λ0 + λ1 + λ2 = 1 

• embedding of vertices + combinatorial structure 
characterize the embedding of the whole mesh
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EULER-POINCARÉ FORMULA

• Relates the number of cells in a mesh with the genus of the 
surface it represents:	


v-e+f = 2-2g -h 

• Genus  g =  # handles (ex.: sphere: genus 0; torus: genus 1)	


• Holes h =  # boundary loops (watertight: no boundary)



EULER-POINCARÉ FORMULA

• In a (watertight manifold) triangle mesh:	


•each face has three edges, each edge is shared by two faces:	


• 2e = 3f 

• e = 3v + 6g - 6  ≈  3v 

• f = 2v + 4g - 4  ≈  2v 

• The formula can be adapted to bordered surfaces to take into 
account boundary loops and edges 
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TOPOLOGICAL RELATIONS
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VERTEX-BASED RELATIONS

• VE (Vertex-Edge):	


• for each vertex v, the list of edges (e1,e2,...,er) 
having an endpoint in v (incident edges) 
arranged in counter-clockwise radial order 
around v	


• list is circular : initial vertex e1 is arbitrarily 
chosen



VERTEX-BASED RELATIONS

• VV (Vertex-Vertex):	


• for each vertex v, the list of vertices (v1,v2,...,vr) 
connected to v with an edge (adjacent 
vertices) arranged in counter-clockwise radial 
order around v	


• consistency rule: vertex vi in VV(v) is an 
endpoint of edge ei in VE(v)



VERTEX-BASED RELATIONS

• VF (Vertex-Face):	


• for each vertex v, the list of faces (f1,f2,...,fr) 
having v on their boundary (incident faces) 
arranged in counter-clockwise radial order 
around v	


• consistency rule: face fi in VF(v) is bounded by 
edges ei and ei+1in VE(v)



EDGE-BASED RELATIONS

• EV (Edge-Vertex):	


• for each edge e, the two endpoints (v1,v2) of e 
(incident vertices)	


• EF (Edge-Face):	


• for each edge e, the two faces (f1,f2) having e on 
their boundary (incident faces)	


• Consistency rule: face f1 [f2] is on the left [right] of 
the oriented line from v1 to v2



EDGE-BASED RELATIONS

• EE (Edge-Edge):	


• for each edge e, two pairs of edges ((e1,e2), (e3,e4)) 
that share a vertex and a face with e (adjacent 
edges)	


• Consistency rule:	

• e1 is incident on v1 and f1 	

• e2 is incident on v1 and f2 	


• e3 is incident on v2 and f1 	


• e4 is incident on v2 and f2



FACE-BASED RELATIONS

• FE (Face-Edge):	


• for each face f, the list (e1,e2,...,em) of edges of 
its boundary (incident edges), in counter-
clockwise order about f	


• list is circular : initial vertex e1 is arbitrarily 
chosen



FACE-BASED RELATIONS

• FV (Face-Vertex):	


• for each face f, the list (v1,v2,...,vm) of vertices 
of its boundary (incident vertices), in counter-
clockwise order about f	


• consistency rule: edge ei in FE(f) has 
endpoints vi and vi+1



FACE-BASED RELATIONS

• FF (Face-Face):	


• for each face f, the list (f1,f2,...,fm) of faces that 
share an edge with f (adjacent faces), in 
counter-clockwise order about f	


• consistency rule: face fi in FF(f) shares edge ei 
in FE(f)



TOPOLOGICAL RELATIONS

• Constant relations return a constant number of elements:	


• EV (each edge has two endpoints)	

• EE (each edge has four adjacent edges)	

• EF (each edge has two incident faces)	


• Variable relations return a variable number of elements:	


• VV, VE, VF, FV, FE, FF: the number of vertices/edges/faces incident/
adjacent to a given vertex/face is not constant and it can be of the 
same order of the total number of vertices/edges/faces
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STARS AND RINGS

• The star of a vertex v is formed by v plus the set of 
cells incident at v (edges and faces of its co-boundary)	


• The star of an edge e is formed by e plus the set of 
faces incident at e (faces of its co-boundary)	


• The 1-ring of a face f is the formed by the union of 
the stars of its boundary vertices	


• The k-ring of a face f, for k>1 is the formed by the 
union of the 1-rings of faces in its (k-1)-ring
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EDITING OPERATIONS

•Mesh processing requires editing operations to change both 
the geometry and the connectivity of meshes	


•Editing based on primitive operations that warrant 
consistency of meshes:	


consistent mesh M → editing op. → consistent mesh M’	


•Consistency is important for the implementation on data 
structures
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EULER OPERATORS

•for general polygonal meshes	

• inherited from geometric modeling	

•always fulfill the Euler formula v - e + f = 2s - 2g - h 	

•not closed on meshes: intermediate results can be not meshes	

• require more general data structures
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EULER OPERATORS

•Examples:	

•MVS - MakeVertexShell: creates a new connected component composed 

of a single vertex	

•MEV - MakeEdgeVertex: creates a new vertex and a new edge, joining it 

to an existing vertex	

•MEF - MakeEdgeFace: connects two existing vertices with an edge 

creating a new face - this can either make and fill a loop, or split an 
existing face into two	


•KHMF - KillHoleMakeFace: fills a hole loop with a face	

• .....
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OPERATORS FOR TRIANGLE 
MESHES

•Specific operators that are closed on triangle meshes:	


triangle mesh M → editing op. → triangle mesh M’	

•Refinement operators: produce a mesh with more vertices/

edges/faces	

•Simplification operators: produce a mesh with less vertices/

edges/faces	

•Can be implemented on any topological data structure for 

triangle meshes
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REFINEMENT OPERATORS

• Triangle split:	


• insert a new vertex v in a triangle t and connect v to the 
vertices of t by splitting it into three triangles	


!

!

!

Note: this is possible on general meshes with star-shaped faces  
- a.k.a. starring
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REFINEMENT OPERATORS

• Edge split:	


• insert a new vertex v on an edge e and connect v to the 
opposite vertices of triangles incident at e by splitting e as 
well as each such triangle into two
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REFINEMENT OPERATORS
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• Vertex split:	


• cut open the mesh along two edges e1 and e2 incident at a common 
vertex v, by duplicating such edges as well as v	




• Vertex split:	


• cut open the mesh along two edges e1 and e2 incident at a common 
vertex v, by duplicating such edges as well as v	


• fill the quadrangular hole with two new triangles and an edge joining the 
two copies of v
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REFINEMENT OPERATORS

32



• Vertex split:	


• possible inconsistencies because of triangle flip	


!

!

!

!

!

• flips can be detected by a local test on the orientation of faces: flips 
changes orientation from clockwise to counter-clockwise and vice-
versa

REFINEMENT OPERATORS
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• Edge collapse (reverse of vertex split):	


• collapse an edge e to a single point	

• e is removed together with its two incident triangles 	

• the endpoints of e are identified	

• the other edges bounding the deleted triangles are pairwise 

identified	

!

!

SIMPLIFICATION OPERATORS
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• Edge collapse:	


• possible inconsistencies because of triangle flip	


!

!

!

!

• consistency check analogous to vertex split

SIMPLIFICATION OPERATORS
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• Edge merge (reverse of edge split):	


• take an internal vertex v with valence 4	

• delete v together with its incident triangles and edges and fill 

the hole with two new triangles sharing a new edge e

SIMPLIFICATION OPERATORS
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• Edge merge:	


• if the hole is not convex, only one diagonal edge can be 
inserted

SIMPLIFICATION OPERATORS
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• Delete vertex (reverse of triangle split):	


• remove an internal vertex v of valence 3 together with its 
incident triangles and edges and fille the hole with a new 
triangle

SIMPLIFICATION OPERATORS

38

tv



• Edge swap:	


• consider an edge e such that its two incident triangles form a 
convex quadrilateral	


• replace e with the opposite diagonal of the quadrilateral, 
rearranging the two incident triangles accordingly

NEUTRAL OPERATOR
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• Triangle split / Delete vertex:	


!

!

• Edge split / Edge merge:	


!

!

• Edge swap: NO

BOUNDARY CASES
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• Vertex split / Edge collapse:

BOUNDARY CASES
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• Edge merge on a convex boundary may cause inconsistencies if 
the quadrilateral formed from the two triangles that merge is not 
convex	


• local check

BOUNDARY CASES
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• Edge merge on a concave boundary may cause self-intersection of 
the mesh	


• global check! intersecting parts may be far on the mesh	

!

!

!

!

• similar problems with edge collapse on concave boundary and 
vertex split on convex boundary

BOUNDARY CASES
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