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Controller synthesis as a game

= support the design process with automatic synthesis

Env | ? = J

»SYs is constructed by an algorithm

» 3Sys Is correct by construction

» Underlying theory: 2-player zero-sum games
»Env is adversarial (worst-case assumption)

Winning strategy = Correct Sys



Controller synthesis with quantitative objectives

Embedded Control Communication Protocols
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Security Protocols Parts of OS/Chipset

In most of those examples, quantitative measures
of performances are important : not only a matter or correctness !!!



Plan of the talk

» 2-player zero-sum games played on weighted graphs
* Mean-payoff and energy games
 Determinacy of MPG: an elementary proof
* Fixpoint algorithm: a pseudo-polynomial time solution
 Memoryless determinacy (corollary of the FP algorithm)
* Multi-dimensional mean-payoff and energy games

 Summary and conclusion



Two-player zero sum games
played on weighted graphs



Game played on weighted graph

Q: positions of Player 1 - maximizer=system

. positions of Player 2 minimizer=environment

Directed graph with weights on edges
and a partition of the states G=(51,5,,E,w)

The game is played in rounds:

-initially a token is on state s,

-rounds: the player owning the current state
chooses an outgoing edge to move the token

\ 4 The outcome is an infinite path=play

Winning condition: the set of infinite paths
is partitioned into
Wi=winning for player 1
W,=S®\Wi1=winning for player 2




Players play according to strategies

(Player 1) strategy: Memoryless strategy:

A1: V™. Vléedge.
N1=set of strategies of PI.1

}\1,m:V1%edge.
N1 m=set of memoryless strategies of Playerl

Finite-memory strategy: Randomized strategy:

A V. Vi>edge but regular (Moore machine) A1 V7. V1> Dist(edge).
N1 i=set of finite memory strategies of Player | N\1,=set of randomized strategies of Playerl




Winning strategies

 |If Player 1 plays A; and Player 2 plays A, from s, then the outcome of the interaction is a play
noted Outcome(s,A;,\,)

* Outcome(s,\;)={ m | 3\, s.t. t= Outcome(s,A;,A;) }
Outcome(s,\,)={ m | I\, s.t. m= Outcome(s,A,\,) }

* A, is a winning strategy for Player 1 from s
if for all strategies A, of Player 2: Outcome(s,A;,A,) € Win,

equivalently, if Outcome(s,A;) € Win,

* M\, is a winning strategy for Player 2 from s
if for all strategies A, of Player 1: Outcome(s,A,,A,) € Win,=S \Win,

* Player 1 wins the game from s if there exists a winning strategy for Player 1 from s
(symmetrically for Player 2)

« A game is determined (from a state s) if either Player 1 has a winning strategy (from s) or
Player 2 has a winning strategy (from s)

* Aclass of games is determined if all the games in the class are determined



Mean-payoff games
(Ehrenfeucht-Mycielski 79)



Mean-payoff games [EM79]

O . positions of Player 1 - maximizer=system

. positions of Player 2 minimizer=environment

Edges are labelled with rewards

(1,4) (4,5) (5,4) ... (4,5) (5,4) ... =play
4 3 -1 3 1 ...

= Lim Inf S+ 2i=1i=n li / n

=MP((1,4) (4,5) (5,4) ... (4,5) (5,4) ....)=1

Wini={ play t | MP(mt) > v}
Note: not w-regular.
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Mean-payoff games [EM79]

Q . positions of Player 1 - maximizer=system

. positions of Player 2 minimizer=environment

Edges are labelled with rewards

(1,4) (4,5) (5,4) ... (4,5) (5,4) .... =play
4 3 -1 3 -1 ...

= Lim Inf S+ 2i=1i=n li / n

Wini={ play t | MP(mt) > v}
Note: not w-regular.



Mean-payoff games [EM79]

O . positions of Player 1 - maximizer=system

. positions of Player 2 minimizer=environment

Edges are labelled with rewards

(1,4) (4,5) (5,4) ... (4,5) (5,4) ... =play
4 3 -1 3 1 ...




Mean-payoff games [EM79]

The decision problem for MPG asks:

Given an state s, if Player 1 has a strategy A; s.t.
~ Outcome(s,\1) € Wini={ playsmt | MP(m) >0}




Energy games
|[CdAHS03,BFLMSO08]



Energy games

O . positions of Player 1 - maximizer=system

. positions of Player 2 minimizer=environment

Edges are labelled with energy consumptions
or energy gains.

Strategies are defined as for MPGs.

Initial energy level : 7

Play : (1,2)(2,1) (1,4) (4,5) (5,4) (4,5) (5,4) ...

EL: 7 8 3 7 10 9 10 9

= O EL=0



Energy games

Q . positions of Player 1 - maximizer=system

: positions of Player 2 minimizer=environment

Edges are labelled with energy consumptions
or energy gains.




Energy games

The decision problem for EG asks:

given state s, decide if there exist

X an initial energy level cp € N, and

X a strategy A; for Player 1 to maintain a
positive energy level from co at all time (i.e.
O EL>0), no matter what Player 2 plays.




Properties that we will prove

We will prove the following results:
 MPG and EG are inter reducible

* MPG and EG are memoryless determined, as a
consequence their decision problems are in NPNcoNP

* There is an elegant pseudo-polynomial time algorithm
to solve EG, and so MPG (remark: no (truly) polynomial
time algorithm is known)



MPG and EG

5

Player 1 has a
memoryless strategy
to force MP > 1



MPG and EG




Determinacy and equivalence
for MPG and EG
An elementary proof



Determinacy of MPG

Theorem [Determinacy] For all MPG G, for all states s:
» either 3 A1 for Player 1 s.t. Outcome(s, A1) C {mt | MP(mt) >0},
* or 3 A, for Player 2 s.t. Outcome(s, A\2) € {mt | MP(mt) <0 }.



Starting point: determinacy for finite tree games

Theorem [Zermelo 1913]. Every finite tree reachability
game is determined.



Starting point: determinacy for finite tree games

Theorem [Zermelo 1913]. Every finite tree reachability
game is determined.

* Every finite duration turn-based game can be represented as a
game tree of bounded depth

* Each branch represents a play

* The winning condition is defined by a partition of the leaves of
the tree: plays that are winning for Player 1 and those that are
winning for Player 2

* A corollary: in chess, either black or white (one of the two
players) is able to force win or draw



Determinacy of finite tree reachability games

Zermelo theorem says that at the root
either Player 1 can force a green leaf

or Player 2 can force a red leaf



Determinacy of finite tree reachability games

The proof is by induction on the depth of
the tree.

Each node of the tree can be labelled in
green or red so that:

1) Player 1 can force a green leaf from any
green node

2) Player 2 can force a red leaf from any
red node

So, as the root is either red or green, one
of the players has a winning strategy for
his objective.



Determinacy of finite tree reachability games



Determinacy of finite tree reachability games

Base case : tree=o0ne leaf. Trivial.



Determinacy of finite tree reachability games

Induction. Player 1 node

v

A

The node is green if and only if
there exists one green successor
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Determinacy of finite tree reachability games

Induction. Player 1 node

v

A

The node is green if and only if
there exists one green successor




Determinacy of finite tree reachability games

Induction. Player 2 node

NN

The node is red if there exists one red successor
otherwise it is green




Determinacy of finite tree reachability games

Induction. Player 2 node

A

The node is red if there exists one red successor
otherwise it is green




Determinacy of finite tree reachability games

Induction. Player 2 node

NN

The node is red if there exists one red successor
otherwise it is green




Determinacy of finite tree reachability games

Induction. Player 2 node

A

The node is red if there exists one red successor
otherwise it is green




Determinacy of finite tree reachability games

We have established:

Theorem [Zermelo 1913]. Every finite tree reachability
game is determined.



Unfoldings for solving MPG

Unfold G up to a first repetition of a
vertex:
* aleafis winning for Pl. 1 if the
cycle has a nonnegative sum
* aleafis winning for Pl. 2 if the
cycle has a negative sum

m By Zermelo theorem:
either Pl. 1 can force positive cycles
or Pl. 2 can force negative cycles

w(cycle)=0 w(cycle)<0



Unfolding - an example

+2 -2 -1
1 3 4

w(cycle)=1 w(cycle)=-1




Unfolding - an example

G Unfolding of G starting in@

+2 -2 -1
1 3 4
w(cycle)=1 . w(cycle)=-1
In this example, Player 1 can force @

nonnegative cycles ! w(cycle)=1



From the tree to the game graph

+2 -2

w(cycle)=1 +1

Player 1 can play the tree strategy
in the game ! w(cycle)=1



Transfer of strategies - MPG-EG

Lemma [strategy transfer] Winning strategies in the tree can be
transferred into winning strategies in the MP/EG game:

* If Player 1 can force green leaves in the unfolding of G then Player 1
has a winning strategy in G for the MP > 0 objective and in the EG;

 If Player 2 can force red leaves in the unfolding of G then Player 2
has a winning strategy in G for the MP < 0 objective and in the EG.

To establish this lemma, we rely on the notion of cycle decomposition
of a play...

... and we will get:

Corollary [MPG=EG] MPG G ¢>v and EG G-v are equivalent !



Decomposition of a play into simple cycles

S1=S6
| '

ITT=S0€p0S1€1S52€2S53€3S54€4S5 5 S e65S7 e7...

t - )
st(rt[..0])=so dec(m[..0])=
st(rt[..1])=s0s1 dec(m]..1])=
st(rt[..2])=s0s1S> dec(m]..2])=
st(rt[..3])=S0515253 dec(m[..3])=
st(mt[..4])=5051525354 dec(mt[..4])=
st(rmt[..5] )=505152 dec(m[..5])=
st(rt[..6])=S051525556 dec(m[..6])=
st(rt[..7])=S0SeS7 dec(mt[..7])=




Proof ideas for transfer of strategies

* If Player 1 plays a winning tree strategy on the game graph then all (simple) cycles
obtained during the cycle decomposition of any outcome have sum of weights = 0.
So, the running sum of all prefixes is bounded from below by -nW
(n=number of states in G, W=absolute value of the largest weight in G).

* This implies that the EG is won by Player 1 from energy level nW
 The MP of the play is nonnegative and Player 1 wins MP 20

 |f Player 2 plays a winning tree strategy on the game graph then all (simple) cycles
obtained during the cycle decomposition of any outcome have a sum of weights < -1.

So, the running sum of all prefixes tends to -oe and each cycle hasa MP £-1/n

 The energy game is won by Player 2 no matter what is the initial energy level

 The MP of the play < -1/n (the finite residue on the stack can be neglected)
and is won by Player 2



Determinacy of MPG-EG and equivalence

Theorem [MPG strong determinacy] For all MPG G, for all states s:
« either 3 A for Player 1 s.t. Outcome(s, A1) C {mt | MP(mt) 20},

* or 3 A, for Player 2 s.t. Outcome(s, A;) € {mt | MP(t) £-1/n }.

Corollary [MPG determinacy] For all MPG G, for all states s:
« either 3 A\; for Player 1 s.t. Outcome(s, A1) C {mt | MP(mt) >0 },
* or 3 A\, for Player 2 s.t. Outcome(s, A;) € {rt | MP(mt) <0 }.

Theorem [Determinacy-EG] For all EG games G, for all states s:
» either there exists an initial EL and a strategy for Player 1 from s to win the energy game,
* or Player 2 has a strategy from s to win the energy game, no matter what is the initial EL.

Theorem [Equivalence MPG-EG] For all games G, for all states s, Player 1 wins for MP 2 0 from s
if and only if Player 1 wins the energy game from s.

1" Strategies in the tree are not guaranteed to be memoryless !

T We need additional arguments to prove memoryless determinacy ...



Need for memory in the game tree

Choice in 2 is not uniform:
it depends on the history
=need for memory




A pseudo-polynomial time
algorithm for energy games



EG and safety

SAFEi=set of (s,c)e S1xIN u SxN s.t. from (s,c),
Player 1 can maintain energy level nonnegative for i steps

N,
EL
What are the controllable
predecessors of SAFE;?
E S1 S? S3 ...

oy S

SAFE;



G
= 2 CPRE(X) where X C ( S1xN u S;xN ) is the set
2 1 4 ) {(s1,€) | 3 (s,w,s’) € E: (s,c+w) € X }
2
_zl - u {(sz,c)| Vv (s2,w,s’) e E:(s',c+tw) e X}
BD-
N
1o
' . E P
 We define < as (s,c) < (s,c) iff s=s” and c<c’ \ )

* CPRE(X) transforms <-upper-closed sets into <-upper-closed sets

« Give a set X, we write X for its <-upper-closure



G CPRE(X) where X € ( S1xNN u S,xN ) is the set
! > {(s1,c) | 3 (sy,w,s’) € E: (s',c+w) e X }
i 1 4 :) -1 u {(sz,c)| Vv (s2,w,s’) e E: (s’ ,c+tw) e X}
+2

@ ) SAFEo="1{(s1,0),(55,0),(53,0),(54,0)}

SAFE1=?{(51,0),(52,2),(53,0),(54,1)}
SAFE2=?{(51,0),(52,2),(53,0),(54,2)}
SAFE3=?{(51,0),(52,2),(53,0),(54,3)}
SAFE4=?{(51,0),(52,2),(53,0),(54,4)}
SAFEs="1{(s1,0),(s2,2),(s3,0),(s4,5)}
SAFE6=?{(51,1),(52,2),(53,0),(54,6)}
SAFE7=?{(51,2),(52,2),(53,0),(54,7)}
SAFEs="1{(s1,3),(s2,2),(s3,0),(54,8)}
SAFE9=1{(s1,3),(s2,2),(s3,0),(54,9)}

;AFEF?{(51,3),(52,2),(53,0),(54,k)} no stabilisation |



CPRE[C](X) to force termination

* Above energy requirement C € N, we consider the game
as lost ! (conservative approximation)

e Let Ce N, define U(C)=EP((S1uS;)x{0...C})
 CPRE[C](X) where X € U(C) is the set
{(s1,c) € S1x{0...C} | 3 (sy,w,s’) € E: (s’,c+w) € X }

U {(s2,c) € S2x{0...C} | V (s2,w,s’) € E : (s’,c+w) € X }



CPRE[C](X) - properties

CPRE*[C](X) is monotone

* so it has a greatest fixed point, noted CPRE*[C]

« computed iteratively from T=B((S,uS;)x{0...C})

* convergence is ensured now as the lattice is finite

* The greatest fixpoint can be computed in O(|V|.|E|.W),
where W is the largest weight in absolute value in G. So
the complexity is pseudo-polynomial



CPRE[C](X)

G CPRE[3](X) where X € U(C) is the set
1 +5
) 1 4 :) -1 {(s1,c) € S1x{0...3} | I (s1,w,s’) € E: (s’,c+w) € X }
+2
_zl U {(s2,c) € Sxx{0..3} | V (s2,w,s’) € E: (s',ctw) € X }

SAFEo="1{(s1,0),(s2,0),(s3,0),(s4,0)}
SAFE1=?{(51,0),(52,2),(53,0),(54,1)}
SAFE»=1{(s1,0),(s2,2),(s3,0),(54,2)}
SAFE3=?{(51,0),(52,2),(53,0),(S4,3)}
SAFE4=?{(51,3),(52,2),(53,0)}
SAFEs=1{(s1,3),(s2,2),(s3,0)}=SAFE

Stabilisation !
Greatest fixpoint



Correctness of the FP algorithm

Theorem [correctness] vV C € N, V (s,c) € T CPRE*[C], Player 1 wins EG from s.

(s1,C")

(S2, VQ




Correctness of the FP algorithm

Theorem [correctness] vV C € N, V (s,c) € T CPRE*[C], Player 1 wins EG from s.

(s1,C")




Correctness of the FP algorithm

with initial energy level c.

Proof. Assume we start in state s with energy level c. We construct a strategy for
Player 1 s.t. if (sq,¢1)(55,C5),...,(Sn,Cn),... iS @an outcome then for all positions i = 0,(s;,ci) €
TCPRE*[C]. So the energy level always stays nonnegative.

The proof is by induction. We consider two cases.

(1) (si.,ci.1) € TCPRE*[C] and s,; € S4, consider (s,c)e CPRE*[C], with s, ;=s and ¢;; > c.
From (s;.1,ci.1) Player 1 chooses e=(s,w,s’)eE such that there exists (s’,c’) € CPRE*[C]

such that c+w > c¢’. As CPRE*[C] is a FP, such an edge exists. So, we have that (s;,c) is
such that s;=s’, c;=c;,+W = c+w > ¢’ and so (s;,¢c;) € T CPRE*[C].

(2) (si.y,ci1) € TCPRE*[C] and s,.; € S,, Player 2 has chosen the edge (s.1,w,s;). Let (s,c)
e CPRE*[C] be s.t. s;.1=s and c;.;>c. By definition of CPRE*[C], there exists (s;,c’) €
CPRE*[C] such that c+w = . So, we have that c;=c;.;+w = c+w > ¢’ and we are done.



Completeness of the FP algorithm

Theorem [completness] Let C=2nW. If Player 1 has a winning strategy from s in EG, then
there exists (s,c) € CPRE*[C].

T L (1 4
®+1

Claim:
F=1{(s1,20),(52,19),(s3,17)}
is a FP of CPRE[20]

So, FC CPRE*[20] !

w(cycle)=1



Completeness of the FP algorithm

Theorem [completness] Let C=2nW. If Player 1 has a winning strategy from sp in EG, then
there exists (so,c) € CPRE*[C].

Proof. Consider the tree unfolding (up to a first repetition) of G from s;and the equivalent
reachability game. If Player 1 wins the EG from s, then Player 2 cannot win the tree reachability

game (because of strategy transfer) and so by determinacy Player 1 has a winning strategy in the
tree.

Consider any strategy of Player 1 in the tree and the subtree induced by that strategy. We annotate
the subtree as follows. The root is labelled with weight nW. Then we label the other nodes starting
from the root by maintaining the energy level on each history.

It is easy to see that this tree only contains energy levels ¢ such that 0 < ¢ £ 2nW, indeed each

branch is of length at most n and so from energy level nW, we can gain at most nW and lose at
most nW.

Let F={ (s,c) € SX{0,..,2nW} | there is a node n in the tree labelled with s and ¢’ and c > ¢’ }. Clearly,
(so,NW) € F, and F is a fix point for the operator CPRE[2nW]. So F € CPRE*[2nW] (as CPRE*[2nW] is
the greatest fixpoint), and (s,,nW) € CPRE*[2nW].



Memoryless strategies for Player 1 in EG

Fixpoint and
good actions -

>
for Player 1
>
>
>
>
S1 S> S3

CPRE*[C]



Memoryless strategies for Player 1 in EG

Fixpoint and
good actions
for Player 1

Important property:

actions that are good for EL ¢
are also good for all EL ¢’>c

=Monotonicity
implies
Memoryless

CPRE*[C]



Memoryless strategies for Player 1 in EG

* Player 1 wins the EG from Wini={s | 3 (s,c) € CPRE*[C] }.

* For each s € Win1NnS;, consider (s,c) where c is minimal
(worst-case situation) in CPRE*[C].

* From each minimal pair (s,c), fix for s an edge (s,w,s’)
such (s,c+w) € CPRE*[C].

Theorem [memoryless]. Strategy A1 is a memoryless
(uniform) strategy A1 which is winning from each Player 1

winning state of G in the EG.



Memoryless strategies for Player 1 and 2 in MPG

As a corollary of MPG=EG, and strong determinacy of MPG, we get:

Theorem [memoryless determinacy of MPG]

Mean-payoff games are memoryless determined, i.e. both Player 1 and Player 2 can play
optimally with memoryless strategies.

Proof. Player 1 can play memoryless as it is the case in EG. For Player 2, we do the following
reasoning: Player 2 can enforce MP £-1/nin G if and only if Player 2 can enforce MP 20 in
G’ where G’ is equal to G in which weight w in G is replaced by -w-1/n in G’. So Player 2 can
play optimally with a memoryless in G.

An we can go back to EG:

Corollary [memoryless strategies for Player 2 in EG].
If Player 2 wins EG from s then he has a memoryless winning strategy from s.



Multi-dim. mean-payoft
and energy games



Multi-dim. Energy Games (MEGs)

a | oD (e
Player 1, Maximizer
ORI O
Player 2, Minimizer

(_1’1)




Multi-dim. Energy Games (MEGs)

(0,0) ...::...Alternate

Q Player 1, Maximizer

Player 2, Minimizer

® Forany (Cy,C3)2(2,1), Player 1 has a winning strategy.

® Player 1 needs memory |



Complexity of
multi-dim. energy games
|[CDHR10}



Player 2 - Memoryless Strategies

MEGs equivalent to “zero-games” played on vector addition systems extended
with states (VASS a.k.a. Petri nets) when the initial marking is (w,w,...,w).

For such games, [BJK10] establishes that memoryless strategies are sufficient
for Player 2.

Lemma|[BJK10]. Memoryless strategies are sufficient for Player 2 to win in
“zero-games” played on VASS.

Theorem|[BJK10]. Zero-game played on vector addition systems extended with
states can be solved in Pspace when weights are in {-1,0,1} (i.e. in ExpSpace for
general weights).

Corollary. The unknown initial credit problem in MEGs is in ExpSpace.

Corollary. Player 2 plays optimally in MEGs with memoryless strategies.



Complexity of MEGs

® Memoryless strategies are sufficient for Player 2 to win a MEG G.
Let A\2€22m, G(A2) is @ multi-weighted graph.

® \,islosing iff G(A2) contains a reachable cycle (not necessarily simple) with
positive effect on all dimensions.

Theorem|[Kosaraju,Sullivan88]. Given a multi-weighted graph G, it is decidable in
deterministic polynomial time if G contains a state s which is reachable from itself
with a (not necessarily simple) path with zero effect on all dimensions.

it G(A2)+self loops

positive effect
=zero effect
if decreasing self loops added

reachable



http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kosaraju:S=_Rao.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sullivan:Gregory_F=.html

Complexity of MEGs

® Memoryless strategies are sufficient for Player 2 to win a MEG G.
Let A\2€22m, G(A2) is @ multi-weighted graph.

® \,islosing iff G(A2) contains a reachable cycle (not necessarily simple) with
positive effect on all dimensions.

0I5~ Lemma.The unknown initial credit problem in MEGs belongs to coNP.



Complexity of MEGs

Lemma. The unknown initial credit problem in MEGs is coNP-Hard.

Proof. We show that deciding whether Player 1 has a winning strategy is as hard as
deciding if a 3CNF formula is unsatisfiable.

Let Y be a 3CNF formula with clauses C1,C,,...,Ck over variables {x1,Xz,...,Xn}. We
construct from  the following game structure with weight in Z?":

literal

S } literal

L
literal

s




Complexity of MEGs

X Ex: d=(xVv-ayvz)A(xVvyV-z)
Ci—
|
74
X
C )4
2




Complexity of MEGs

x (I-10000) Ex: d=(xvayvz)A(xVvyVz)

=y (00-1100)

z (00001 -1)

~x (-1 1000 0)

y (00 1-100)

C,

~z(0000-1 1)

We define the weight labelling as follows:

-every edge is labeled by {0}?" with the exception of edges going from literals back to initial state.
-for a literal y and an edge back to the initial state, the weight vector contains:

O | in the dimension of y

O -1 in the dimension of the complement of y

O 0 otherwise



Complexity of MEGs

x (I-10000) Ex: d=(xVv-ayvz)A(xVvyV-z)
-y (00-1100)
C) V=1, v(y)=1, v(z)=0
z (00001 -1)
vEO®
-x (-1 1000 0)
A2(C)=x
001-100
C2 2 ) A2(C2)=y
~z(0000-1 1)

® is satisfiable implies Player 2 wins

Let v be s.t. v = ®. We construct A; as follows: in each clause C;, A2 chooses lj s. t. v E |;.

Now, take any A| and consider the play consistent with A| and A2. There must exist C; that
appears ®-often along this play: the dimension that correspond to -ljj is decreased oo-
often without ever being increased ! There is no initial credit that can help Player | !



Complexity of MEGs

® is unsatisfiable implies Player | is winning
or equivalently @ is unsatisfiable implies Player 2 is not winning

As @ is unsatisfiable, when Player 2 chooses one literal per clause (we know that he
can play optimally without memory), it has to choose two literals that are
complementary. Let assume that the choice of Player 2 are complementary for

clauses Ci and C;. In that case, the winning strategy for Player | is to alternate between
Ci and C;. This strategy is winning for a initial credit of | in all dimension.

= (ay)A(xVY)A(X)

-y (0 0 -
C, y(QO0-11) |
X(\'\OO) —>
—> »CZ )’(OOI_I)
~—>
x (-1 1 00) S




Complexity of MEGs

® is unsatisfiable implies Player | is winning
or equivalently @ is unsatisfiable implies Player 2 is not winning

As @ is unsatisfiable, when Player 2 chooses one literal per clause (we know that he
can play optimally without memory), it has to choose two literals that are
complementary. Let assume that the choice of Player 2 are complementary for

clauses Ci and C;. In that case, the winning strategy for Player | is to alternate between
Ci and C;. This strategy is winning for a initial credit of | in all dimension.

= (ay)A(xVY)A(X)

~y (00 -1 1)
Ci {
— > C» Y(001.y (-1 |+00)
N _

alternate Cs ~x(1100) | (0000)




Complexity of MEGs

® is unsatisfiable implies Player | is winning
or equivalently @ is unsatisfiable implies Player 2 is not winning

As @ is unsatisfiable, when Player 2 chooses one literal per clause (we know that he
can play optimally without memory), it has to choose two literals that are
complementary. Let assume that the choice of Player 2 are complementary for

clauses Ci and C;. In that case, the winning strategy for Player | is to alternate between
Ci and C;. This strategy is winning for a initial credit of | in all dimension.

D= (ay)A(xVY)A(X)

-y (00 -1 |
C A - (00-1 1)
+
alternate x (1-109 001 -1
— )CZ )’(OOI_I) (OO=OO)
9
x(1100)

C3




Complexity of MEGs

Theorem. The unknown initial credit problem in MEGs is coNP-C.



Exponential Memory is
Sufficient for Player | in

Multi-dim. Energy Games
[CRRI2]



Player 1 - Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in MEGs.



Player 1 - Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in MEGs.

Proof. First, (N <) is a well-quasi ordered set, i.e.:

. < is a partial order (so a pre-order)
2. for all infinite sequences of elements mo m; my ... my ... in (NK)®,

there exists i<j such that m; < m,



Player 1 - Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in MEGs.

Proof. First, (N <) is a well-quasi ordered set.

Let A\ be winning

Co




Player 1 - Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in MEGs.

Proof. First, (N <) is a well-quasi ordered set.

Let A be winning On each branch
Co Co

L,

stop and play
as from L, ! L2

With L <L,



Player 1 - Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player 1 to win in MEGs.

Proof. First, (N <) is a well-quasi ordered set.

Let A\i be winning On each branch Then >‘.' IS winning
and finite memory

L,

stop and play
as from L, ! L2

With L <L,



Player 1 - Finite Memory Strategies

Lemma. Finite memory strategies are sufficient for Player | to win in MEGs.

Proof. First, (NK <) is a well-quasi ordered set.

Then N’y is winning
and finite memory

Finite tree=winning strategy:
@ play according to the choices made in tree

@ in leaf, go to ancestor with lower or equal energy




Finite memory - Exponential memory

Then N’| is winning
and finite memory

@ Exponential memory is sufficient.

® Use extensions of technics a la Rackoff
(Petri nets) - refinements of [BJK10]




icient.

[BJK10]

Arbitrary ics & la Rackoff
weights: s of [BJK10]
2Exp




onential memory

=Self-Covering Tree [BJKI0]

........ f
[BJKIO] E yicient.
Arbitrary : ics & la Rackoff
weights: > Of (K10
2Exp
IExp

Depth: single exponential - encoding of
arbitrary weights into {-1,0,1} does not add
choices to the adversary.

Width: only energy level important (DAG).



onential memory

=Self-Covering Tree [BJKI0]

coant
[BJK I O] cien

Arbitrary ics & la Rackoff
weights: s of [BJK10]

2Exp
| Exp

R T ELCEE T EEY =

Depth: single exponential - encoding of
arbitrary weights into {-1,0,1} does not add
choices to the adversary.

Width: only energy level important (DAG).

Works also with parity



Finite memory - Exponential memory

Then N’| is winning
and finite memory




onential memory

(-1,0,0,0) l
(0,-1,0,0)

L

(1,0,0,0)

icient.

ics a la Rackoff
s of [BJK10]

(0,0,1,0)




Finite memory - Exponential memory

Then N’| is winning
and finite memory

@ Leads to symbolic and incremental algorithms



onential memory

C=max. constant appearing in the SCT

icient.

ics a la Rackoff
s of [BJK10]

Y Minimal energy vectors
that are winning (within [0,2C]%)

Incremental and symbolic
algorithm



Complexity of deciding the
existence of

memoryless winning strategies
for Player | in MEGs



When Player | plays memoryless

Theorem. The unknown initial credit problem in 2D-MEGs for
memoryless strategies is NP-C.

Proof.

(i) Easyness: Guess a memoryless strategy for Player | and then search (in det. polynomial
time) for the existence of a cycle which is negative on at least one dimension (e.g. using
Karp’s algorithm). If no such cycle exists, the memoryless strategy of Player | is winning.



When Player | plays memoryless

Theorem. The unknown initial credit problem in 2D-MEGs for
memoryless strategies is NP-C.

Proof.

(i) Hardness: Reduction from PARTITION.

Let A={a1,a3,...,an} and s : A = Np, and let B=2,ca s(a) (and assume B is even).
PARTITION asks if A can be partitioned into AL and Ar such that 2,cAL s(a)=22cAr s(a)



When Player | plays memoryless

Theorem. The unknown initial credit problem in 2D-MEGs for
memoryless strategies is NP-C.

Proof.

(i) Hardness: Reduction from PARTITION.

Let A={a1,a3,...,an} and s : A = Np, and let B=2,ca s(a) (and assume B is even).
We construct the following one player MEG:

eamn “‘“/ ~" aV 00 e y N
o- s(al\A /rﬁY o- m A)Y o- <>\4 Ajm

Clearly, a memoryless strategy is winning iff it corresponds to a valid right-left partition.



Multi-dim.
Mean-payoff Games
[RV11]



Two variants: LimSup - LimInf

® LimInf

® Lim Sup

® In the one dimension case, it does not make a difference because
there exist memoryless optimal strategies, so outcomes can be
considered as ultimately periodic (and the two limits coincide)

® |n the multi-dim. case, it makes a difference because optimal
strategies may require infinite memory



MMPGs - Infinite Memory

Lim-inf MP: define the mean-payoff in each dimension as follows:

Let it : N—7Z?, we associate to i the pair (u,v) where:

® u=liminfis-1/nxZnm(i)d1 %MP on first dim.

® v=liminfise~1/nxZico.nm(i)2 %MP on second dim.

Consider the strategy that alternates visits to

d. and qgp such that after the nt" alternation, (E’—O\) (0,0) (B’i)
the self-loop on the visited state g (g € {ga,9b}) 4\/ - \7>, 4\
is taken n times. This strategy achieves —’*\q‘u\ /\”/'
threshold (1, 1) for Lim-inf MP, as the (56)

frequency of edges with (0,0) goes to 0.



MMPGs - Infinite Memory

Lim-inf MP: define the mean-payoff in each dimension as follows:

Let it : N—7Z?, we associate to i the pair (u,v) where:
® u=liminfis-~1/nxZonm(i)\1 %MP on first dim.

® v=liminfis~1/nxZ-.nn(i)d2 %MP on second dim.

(2,0) (0,2)

pPLge
OWliBO

(0,0)




MMPGs - Infinite Memory

Lim-sup MP: define the mean-payoff in each dimension as follows:

Let it : N—7Z?, we associate to i the pair (u,v) where:

® u=limsupis-1/nxZio.nm(i)L1 %MP on first dim.

® v=limsupise1/nxZonm(i)d2 %MP on second dim.

Consider the strategy that alternates visits to

d. and qp such that after the nt" alternation,

the self-loop on the visited state q (g € {ga,db}) 2
is taken so many times that the average ),J'\/ ¢
frequency of g gets larger than (n-1)/n in the —’{\?Cf/i\ /\Qb/
current finite prefix of the play. This is always -l
possible and achieves threshold (2, 2) for Lim-

sup MP.



MMPGs - Infinite Memory

Lim-sup MP: define the mean-payoff in each dimension as follows:

Let it : N—Z2, we associate to 1t the pair (u,v) where:
® u=limsupis-1/nxZio.nm(i)L1 %MP on first dim.

® v=limsupis-1/nxZi-0nm(i)2 %MP on second dim.

(2,0) (0,2)

() o (
o3 o

(0,0)




MMPGs - Infinite Memory

and Lim-inf

Complexity [ Memory Pl. 1 | Synthesis Pl.1 | Memory PI.2
Lim-sup NPncoNP 00 V Memoryless
Lim-inf coNP-C 00 Memoryless
Lim-sup coNP-C 00 Memoryless




MMPGs - Lim-sup

Lemma. If for all states ve V1uV,, for all i, 1<i<k, Player 1 has a winning strategy
for winning the mean-payoff sup. for dimension i, then for all states ve V1uV,,

Player | has a winning strategy from v for the conjunction of all k mean-payoff
objectives.

Intuition: play each of the k winning strategies one after the other for longer
and longer time intervals.

e O




MMPGs - Lim-sup - Algorithm

Consider the following algorithm:

. Compute Wi=set of states where PI. | wins the 1 dim. game defined by dim. i
2. Let W be the intersection of all Wy’s

J. Remove states that are notin W

Repeat until no states are removed

Let Win be the states that survived this process

Win dim. |

Win dim. 2




MMPGs - Lim-sup - Algorithm

Consider the following algorithm:

. Compute Wi=set of states where PI. | wins the 1 dim. game defined by dim. i
2. Let W be the intersection of all Wy’s

J. Remove states that are notin W

Repeat until no states are removed

Let Win be the states that survived this process

Intersection




MMPGs - Lim-sup - Algorithm

Consider the following algorithm:

. Compute Wi=set of states where PI. | wins the 1 dim. game defined by dim. i
2. Let W be the intersection of all Wy's

J. Remove states that are notin W

Repeat until no states are removed

Let Win be the states that survived this process




MMPGs - Lim-sup - Algorithm

Lemma. From all states in Win, Player 1 has a winning strategy for each dimension.
From all states that are not in Win, Player Il has a winning strategy for at least one

dimension.

Theorem [RV11]. From all states in Win, Player 1 has a winning strategy for all the
dimensions (for Lim Sup).

Corollary. Deciding MMPGs with Lim-sup is in NPNncoNP.



Summary

boyers | Swmehesis | GRS | oedmon.
EG Memoryless OK Memoryless NPNcoNP
MP Memoryless OK Memoryless NPNcoNP
MEG Exponential OK Memoryless coNP-C
MEG-finite - OK Memoryless NP-C
MMPG - Sup Infinite OK Memoryless NPNcoNP
MMPG - Inf Infinite ? Memoryless coNP-C
MMPG - Mix Infinite ? Memoryless coNP-C
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