Computer Aided Verification
 CAV a.a. 2014/15

Giorgio Delzanno

DIBRIS, Università di Genova

Temporal Logic

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?
- Temporal logic is a special type of modal logic in which the truth of a formula depends on the time in which it is evaluated
- Typical temporal operators are
- Eventually Φ : in some future instant Φ is true
- Always Φ : in all future instants Φ is true

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other
- LTL and CTL are submsumed by CTL*, which in turn, is subsumed by the μ-calculus (a fixpoint logic)

Local Model Checking Problem

- Fixed a (Kripke) model M (a transition system), an initial state s_{0}, and a temporal property φ

$$
M, s_{0} \models \varphi ?
$$

where $\models=$ satisfiability relation

Global Model Checking Problem

- Fixed a (Kripke) model M and a temporal property φ, compute all states s such that $M, s \models \varphi$.
- (Global solves Local)

Linear Temporal Logic

PLTL Syntax

- Atomic Proposition: predicate symbols p, q, r, \ldots

PLTL Syntax

- Atomic Proposition: predicate symbols p, q, r, \ldots
- Classical connectives:

$$
\neg \psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi
$$

Temporal Operators

A formula withot modalities at the top level is evaluated in the current instant
Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi: \varphi$ is true in the next time instant

Temporal Operators

A formula withot modalities at the top level is evaluated in the current instant
Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi: \varphi$ is true in the next time instant
- $\mathbf{F} \varphi$: in the future/eventually φ

Temporal Operators

A formula withot modalities at the top level is evaluated in the current instant
Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi: \varphi$ is true in the next time instant
- $\mathbf{F} \varphi$: in the future/eventually φ
- $\mathbf{G} \varphi$: globally/always φ

Temporal Operators

A formula withot modalities at the top level is evaluated in the current instant
Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi: \varphi$ is true in the next time instant
- $\mathbf{F} \varphi$: in the future/eventually φ
- $\mathbf{G} \varphi$: globally/always φ
- $\varphi \mathbf{U} \psi: \varphi$ until ψ

Logical equivalences

- The set $\{\neg, \vee, \mathbf{X}, \mathbf{U}\}$ is sufficiently complete to define LTL formulas

Logical equivalences

- The set $\{\neg, \vee, \mathbf{X}, \mathbf{U}\}$ is sufficiently complete to define LTL formulas
- Indeed,

$$
\begin{aligned}
\mathbf{F} \varphi & \equiv \operatorname{true} \mathbf{U} \varphi \\
\mathbf{G} \varphi & =\neg \mathbf{F} \neg \varphi
\end{aligned}
$$

Traffic Light

- once green, next state is not red

$$
\mathbf{G}(\text { green } \supset \neg \mathbf{X} \text { red })
$$

Traffic Light

- once green, next state is not red

$$
\mathbf{G}(\text { green } \supset \neg \mathbf{X} \text { red })
$$

- eventually, it becomes green

F green

Traffic Light

- once green, next state is not red

$$
\mathbf{G}(\text { green } \supset \neg \mathbf{X} \text { red })
$$

- eventually, it becomes green

> F green

- once green, becomes red after being yellow for some time

$$
\mathbf{G}(\text { green } \supset((\text { green } \mathbf{U} \text { yellow }) \mathbf{U} \text { red }))
$$

Semantics

- An LTL model is an infinite path $\sigma=\langle S, R, L\rangle$ defined as
- S is a denumerable, non empty set of states

Semantics

- An LTL model is an infinite path $\sigma=\langle S, R, L\rangle$ defined as
- S is a denumerable, non empty set of states
- $R: S \rightarrow S$ assigns a unique successor $R(s)$ to each state s (s $R(s) R(R(s)) \ldots$ is an infinite sequence of states)

Semantics

- An LTL model is an infinite path $\sigma=\langle S, R, L\rangle$ defined as
- S is a denumerable, non empty set of states
- $R: S \rightarrow S$ assigns a unique successor $R(s)$ to each state s (s $R(s) R(R(s)) \ldots$ is an infinite sequence of states)
- $L: S \rightarrow 2^{A P}$ assigns to $s \in S$ the set of propositions formulas that are true in s

Semantics

- An LTL model is an infinite path $\sigma=\langle S, R, L\rangle$ defined as
- S is a denumerable, non empty set of states
- $R: S \rightarrow S$ assigns a unique successor $R(s)$ to each state s (s $R(s) R(R(s)) \ldots$ is an infinite sequence of states)
- $L: S \rightarrow 2^{A P}$ assigns to $s \in S$ the set of propositions formulas that are true in s
- We can represent it as a finite graph (labels over $2^{A P}$!)

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$
- $\sigma, s \models \varphi \vee \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$
- $\sigma, s \models \varphi \vee \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
- ...

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$
- $\sigma, s \models \varphi \vee \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
- $\sigma, s \models \mathbf{X} \varphi$ if $\sigma, R(s) \models \varphi$

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$
- $\sigma, s \models \varphi \vee \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
- ...
- $\sigma, s \models \mathbf{X} \varphi$ if $\sigma, R(s) \models \varphi$
- $\sigma, s \models \varphi_{1} \mathbf{U} \varphi_{2}$ if
$\exists j \geq 0 . \sigma, R^{j}(s) \models \varphi_{2},\left(\forall 0 \leq k<j . \sigma, R^{k}(s) \models \varphi_{1}\right)$

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$
- $\sigma, s \models \varphi \vee \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
-...
- $\sigma, s \models \mathbf{X} \varphi$ if $\sigma, R(s) \models \varphi$
- $\sigma, s \models \varphi_{1} \mathbf{U} \varphi_{2}$ if

$$
\exists j \geq 0 . \sigma, R^{j}(s) \models \varphi_{2}, \quad\left(\forall 0 \leq k<j . \sigma, R^{k}(s) \models \varphi_{1}\right)
$$

- $\sigma, s \models \mathbf{F} \varphi$ if $\exists j . \sigma, R^{j}(s) \models \varphi$

Satisfiability

- For $\sigma=\langle S, R, L\rangle$, let $R^{j}(s)=\underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

- $\sigma, s \models p$ if $p \in L(s)$
- $\sigma, s \models \neg \phi$ if $\sigma, s \not \models \phi$
- $\sigma, s \models \varphi \vee \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
-...
- $\sigma, s \models \mathbf{X} \varphi$ if $\sigma, R(s) \models \varphi$
- $\sigma, s \models \varphi_{1} \mathbf{U} \varphi_{2}$ if

$$
\exists j \geq 0 . \sigma, R^{j}(s) \models \varphi_{2}, \quad\left(\forall 0 \leq k<j . \sigma, R^{k}(s) \models \varphi_{1}\right)
$$

- $\sigma, s \models \mathbf{F} \varphi$ if $\exists j$. $\sigma, R^{j}(s) \models \varphi$
- $\sigma, s \models \mathbf{G} \varphi$ if $\forall j$. $\sigma, R^{j}(s) \models \varphi$

Example 1

- If $p \mathbf{U} q$ holds in s, then $\mathbf{F} q$ holds in s,
- The weak until operator:

$$
p \mathbf{W} q \equiv \mathbf{G} p \vee(p \mathbf{U} q)
$$

Example 2

Let M be the following model
 then

- $\mathbf{X} p$ is true in s_{2}

Example 2

Let M be the following model
 then

- $\mathbf{X} p$ is true in s_{2}
- $\mathbf{F p}$ is true in $s_{0}, s_{1}, s_{2}, s_{3}$

Example 2

Let M be the following model
 then

- $\mathbf{X} p$ is true in s_{2}
- $\mathbf{F p}$ is true in $s_{0}, s_{1}, s_{2}, s_{3}$
- $\mathbf{G} p$ is never true

Example 2

Let M be the following model
 then

- $\mathbf{X} p$ is true in s_{2}
- $\mathbf{F p}$ is true in $s_{0}, s_{1}, s_{2}, s_{3}$
- $\mathbf{G} p$ is never true
- $q \mathbf{U} p$ is true in s_{1}, s_{2}, s_{3}

Example II

- Let M be the following model

- then
- $\mathbf{F} t$ is true in s_{0}

Example II

- Let M be the following model

- then
- $\mathbf{F} t$ is true in s_{0}
- $\mathbf{G} p$ is true in all states

Example II

- Let M be the following model

- then
- $\mathbf{F} t$ is true in s_{0}
- $\mathbf{G} p$ is true in all states
- G Fs is true in all states

Example II

- Let M be the following model

- then
- $\mathbf{F} t$ is true in s_{0}
- $\mathbf{G} p$ is true in all states
- G Fs is true in all states
- $\mathbf{X}(r \supset(q \mathbf{U} s))$ is true in s_{0}, s_{1}, s_{3}

Interesting LTL formulas

- $\mathbf{G} p$: always p (safety property)

Interesting LTL formulas

- Gp: always p (safety property)
- $p \supset \mathbf{F} q$: if p holds initially, eventually q holds (reachability)

Interesting LTL formulas

- $\mathbf{G} p$: always p (safety property)
- $p \supset \mathbf{F} q$: if p holds initially, eventually q holds (reachability)
- G Fp: p is true infinitely often (fairness)

Interesting LTL formulas

- $\mathbf{G} p$: always p (safety property)
- $p \supset \mathbf{F} q$: if p holds initially, eventually q holds (reachability)
- GFp: p is true infinitely often (fairness)
- $\mathbf{F G} p$: when p becomes true, it remains true forever (eventually permanently)

Interesting LTL formulas

- $\mathbf{G} p$: always p (safety property)
- $p \supset \mathbf{F} q$: if p holds initially, eventually q holds (reachability)
- GFp: p is true infinitely often (fairness)
- $\mathbf{F G} p$: when p becomes true, it remains true forever (eventually permanently)
- $\mathbf{G}(p \supset \mathbf{F} q)$: globally, if p holds then eventually q holds (responsiveness)

Interesting LTL formulas

- GFp $\neq \boldsymbol{F} p$

Interesting LTL formulas

- $\mathbf{G F} p \not \equiv \mathrm{~F} p$
- $\mathbf{F G} p \not \equiv \mathbf{G} p$

Axioms for LTL: Duality

$$
\begin{aligned}
& \neg \mathbf{G} \varphi \equiv \mathbf{F} \neg \varphi \\
& \neg \mathbf{F} \varphi \equiv \mathbf{G} \neg \varphi \\
& \neg \mathbf{X} \varphi \equiv \mathbf{X} \neg \varphi
\end{aligned}
$$

Axioms for LTL: Expansion

$$
\begin{aligned}
& \varphi \mathbf{U} \psi \equiv \psi \vee[\varphi \wedge \mathbf{X}(\varphi \mathbf{U} \psi)] \\
& \mathbf{F} \varphi \equiv \varphi \vee \mathbf{X} \mathbf{F} \varphi \\
& \mathbf{G} \varphi \equiv \varphi \wedge \mathbf{X} \mathbf{G} \varphi
\end{aligned}
$$

Axioms for LTL: Idempotence

$$
\begin{aligned}
\mathbf{G} \mathbf{G} \varphi & \equiv \mathbf{G} \varphi \\
\mathbf{F} \mathbf{F} \varphi & \equiv \mathbf{F} \varphi \\
\varphi \mathbf{U}(\varphi \mathbf{U} \psi) & \equiv \varphi \mathbf{U} \psi \\
(\varphi \mathbf{U} \psi) \mathbf{U} \psi & \equiv \varphi \mathbf{U} \psi
\end{aligned}
$$

Axioms for LTL: Absorbtion

F G F $\varphi \equiv \mathbf{G} \mathbf{F} \varphi$
$\mathbf{G} \mathbf{F} \mathbf{G} \varphi \equiv \mathbf{F} \mathbf{G} \varphi$

Axioms for LTL: Commutation

$$
\mathbf{X}(\varphi \mathbf{U} \psi) \equiv(\mathbf{X} \varphi) \mathbf{U}(\mathbf{X} \psi)
$$

A Deduction System for LTL

Axioms:
All tautologies

$$
\begin{aligned}
& \mathbf{X}(\neg \varphi) \equiv \neg \mathbf{X} \varphi \\
& \mathbf{X}(\varphi \supset \psi) \supset \mathbf{X} \varphi \supset \mathbf{X} \psi \\
& \mathbf{G} \varphi \supset(\varphi \wedge \mathbf{X} \mathbf{G} \varphi)
\end{aligned}
$$

Rules:
Modus ponens $\varphi, \varphi \supset \psi \vdash \psi$
Next $\quad \varphi \vdash \mathbf{X} \varphi$
Indution $\quad \varphi \supset \psi, \varphi \supset \mathbf{X} \varphi \vdash \varphi \supset \mathbf{G} \psi$

Derivation

$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)$

- $(\neg(A \supset B)) \supset A[$ taut $]$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A[$ taut $]$
- $\mathbf{X}((\neg(A \supset B)) \supset A)[\mathrm{nex}]$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[\mathrm{nex}]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[n e x]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A$ (mp)

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[\mathrm{nex}]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[\mathrm{nex}]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[n e x]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$
- $(\neg(A \supset B)) \supset \neg B[$ taut $]$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[\mathrm{nex}]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$
- $(\neg(A \supset B)) \supset \neg B[$ taut $]$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} \neg B$ [as before]

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[\mathrm{nex}]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$
- $(\neg(A \supset B)) \supset \neg B[$ taut $]$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} \neg B$ [as before]
- $\mathbf{X} \neg B \supset \neg \mathbf{X} B$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[n e x]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X A}(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$
- $(\neg(A \supset B)) \supset \neg B[$ taut $]$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} \neg B$ [as before]
- $\mathbf{X} \neg B \supset \neg \mathbf{X} B$
- $(\neg \mathbf{X}(A \supset B)) \supset \neg \mathbf{X} B$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[n e x]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$
- $(\neg(A \supset B)) \supset \neg B[$ taut $]$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} \neg B$ [as before]
- $\mathbf{X} \neg B \supset \neg \mathbf{X} B$
- $(\neg \mathbf{X}(A \supset B)) \supset \neg \mathbf{X} B$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} A \wedge \neg \mathbf{X} B \equiv \neg(\mathbf{X} A \supset \mathbf{X} B)$

Derivation

$$
(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)
$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)[n e x]$
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset[\mathbf{X} \neg(A \supset B) \supset \mathbf{X} A](\mathrm{ax})$
- $\mathbf{X} \neg(A \supset B) \supset \mathbf{X A}(\mathrm{mp})$
- $\mathbf{X} \neg(A \supset B) \equiv \neg \mathbf{X}(A \supset B)(a x)$
- $\neg \mathbf{X}(A \supset B) \supset \mathbf{X} A$
- $(\neg(A \supset B)) \supset \neg B[$ taut $]$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} \neg B$ [as before]
- $\mathbf{X} \neg B \supset \neg \mathbf{X} B$
- $(\neg \mathbf{X}(A \supset B)) \supset \neg \mathbf{X} B$
- $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} A \wedge \neg \mathbf{X} B \equiv \neg(\mathbf{X} A \supset \mathbf{X} B)$
- $(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X}(A \supset B)$

Other Theorem

$(A \wedge \mathbf{X F} A) \supset \mathrm{F} A$

Expressiveness of LTL formulas

- A is true only at the even states $s_{0} s_{2} \ldots$ (false at odd ones)

Expressiveness of LTL formulas

- A is true only at the even states $s_{0} s_{2} \ldots$ (false at odd ones)

$$
A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X} A)
$$

Expressiveness of LTL formulas

- A is true only at the even states $s_{0} s_{2} \ldots$ (false at odd ones)

$$
A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X} A)
$$

- even $(A): A$ is true at the even states (don't care at odd ones)

Expressiveness of LTL formulas

- A is true only at the even states $s_{0} s_{2} \ldots$ (false at odd ones)

$$
A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X} A)
$$

- even $(A): A$ is true at the even states (don't care at odd ones)

$$
A \wedge \mathbf{G}(A \supset \mathbf{X X} A) \text { Is it ok? }
$$

Expressiveness of LTL formulas

- A is true only at the even states $s_{0} s_{2} \ldots$ (false at odd ones)

$$
A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X} A)
$$

- even $(A): A$ is true at the even states (don't care at odd ones)

$A \wedge \mathbf{G}(A \supset \mathbf{X X} A)$ Is it ok?

- No, it is false if A is true in s_{1} and false in s_{3} ! Actually, it can not be expressed in LTL

Lemma

Assumptions

- Let $M(i)=p^{i}(\neg p) p^{\omega}$ be the model in which p is true in $s_{0} s_{1} \ldots s_{i}$, false in state s_{i+1}, and true in s_{j} for $j>i+1$.
- $M(0), M(2), M(4), \ldots$ all satisfy even (p), while $M(1), M(3), \ldots$ don't

Lemma

- Let φ be a formula on predicate p with k occurrences of \mathbf{X} Property
For $i>k$, the truth of φ on $M(i)$ is independent from i i.e. φ has always the same value in $p^{k+1}(\neg p) p^{\omega}, p^{k+2}(\neg p) p^{\omega}, \ldots$
P. Wolper. Temporal Logic can be more expressive

Proof of the Lemma

By induction on the structure of φ.
Let f_{i} be the value of f in $M(i)$:

- φ atomic: $\varphi=p$ and p is true in $M(i)$ for all $i>0$

Proof of the Lemma

By induction on the structure of φ.
Let f_{i} be the value of f in $M(i)$:

- φ atomic: $\varphi=p$ and p is true in $M(i)$ for all $i>0$
- $\varphi=\mathbf{X} \psi: \varphi$ in $M(i)$ evaluates as ψ in $M(i-1)$, but ψ has $k-1$ occurrences of next, so we can apply the ind. hyp.

Proof of the Lemma

By induction on the structure of φ.
Let f_{i} be the value of f in $M(i)$:

- φ atomic: $\varphi=p$ and p is true in $M(i)$ for all $i>0$
- $\varphi=\mathbf{X} \psi: \varphi$ in $M(i)$ evaluates as ψ in $M(i-1)$, but ψ has $k-1$ occurrences of next, so we can apply the ind. hyp.
- $\varphi=\mathbf{G} \psi$, i.e., $\varphi \equiv \psi \wedge \mathbf{X G} \psi$, then
$\varphi_{i} \equiv \psi_{i} \wedge \psi_{i-1} \wedge \ldots \wedge \psi_{k+1} \wedge \varphi_{k}$, but by ind. hyp.
$\psi_{i} \wedge \ldots \wedge \psi_{k+1} \equiv \psi_{k+1}$ have the same num. of occurrences of
\mathbf{X} as φ, i.e., $\varphi_{i} \equiv \psi_{k+1} \wedge \varphi_{k}$ (independent from i)

Proof of the Lemma

By induction on the structure of φ.
Let f_{i} be the value of f in $M(i)$:

- φ atomic: $\varphi=p$ and p is true in $M(i)$ for all $i>0$
- $\varphi=\mathbf{X} \psi: \varphi$ in $M(i)$ evaluates as ψ in $M(i-1)$, but ψ has $k-1$ occurrences of next, so we can apply the ind. hyp.
- $\varphi=\mathbf{G} \psi$, i.e., $\varphi \equiv \psi \wedge \mathbf{X G} \psi$, then
$\varphi_{i} \equiv \psi_{i} \wedge \psi_{i-1} \wedge \ldots \wedge \psi_{k+1} \wedge \varphi_{k}$, but by ind. hyp.
$\psi_{i} \wedge \ldots \wedge \psi_{k+1} \equiv \psi_{k+1}$ have the same num. of occurrences of
\mathbf{X} as φ, i.e., $\varphi_{i} \equiv \psi_{k+1} \wedge \varphi_{k}$ (independent from i)
- etc.

How to express even (p) ?

- Automata: that recognizes p, true, p, true, ... (infinite word)

How to express even (p) ?

- Automata: that recognizes p, true, p, true, ... (infinite word)
- ETL (Wolper): We can express even (p) by quantifying over predicates:

$$
\exists q .(q \wedge \mathbf{G}(q \supset \mathbf{X} \neg q) \wedge \mathbf{G}(\neg q \supset \mathbf{X} q) \wedge \mathbf{G}(q \supset p))
$$

Model Checking

Let us consider models with several infinite paths.

- Model checking: Fixed a model M, a state s_{0} and an LTL formula $\varphi \sigma, s_{0} \models \varphi$ for every σ in M ?

Model Checking

Let us consider models with several infinite paths.

- Model checking: Fixed a model M, a state s_{0} and an LTL formula $\varphi \sigma, s_{0} \models \varphi$ for every σ in M ?
- Existential Model checking: Fixed a model M, a state s_{0} and an LTL formula φ is there an infinite path σ in M s.t. $\sigma, s_{0} \models \varphi$? (dual to the first problem)

Satisfiability/Validity

- Satisfiability problem: Fixed a formula φ, is there an infinite path σ, and a state s_{0} s.t. $\sigma, s_{0} \models \varphi$?

Satisfiability/Validity

- Satisfiability problem: Fixed a formula φ, is there an infinite path σ, and a state s_{0} s.t. $\sigma, s_{0} \models \varphi$?
- Validity problem: Fixed a formula φ, does $\sigma, s_{0} \models \varphi$ hold for every infinite path σ and initial state s_{0} ? (dual to satisfiability)

Satisfiability/Validity

- Satisfiability problem: Fixed a formula φ, is there an infinite path σ, and a state s_{0} s.t. $\sigma, s_{0} \models \varphi$?
- Validity problem: Fixed a formula φ, does $\sigma, s_{0} \models \varphi$ hold for every infinite path σ and initial state s_{0} ? (dual to satisfiability)
- The problems are decidable but with exponential-time in the size of φ

Model Checking Algorithm

- Tableau methods

Model Checking Algorithm

- Tableau methods
- Büchi Automata (SPIN)

Model Checking Algorithm

- Tableau methods
- Büchi Automata (SPIN)
- Alternating Büchi automata

Semantic Tableau in Classical Logic

(See slides on Aulaweb)

- Deductive method for checking a formula

Semantic Tableau in Classical Logic

(See slides on Aulaweb)

- Deductive method for checking a formula
- Goal: build a model using syntactic rules (semantic method)

LTL Model Checking Algorithm

Lichtenstein-Pnueli's Algorithm: Tableau

- For fixed M, s, φ, decide $M, s \models \psi$
- The algorithm is based on the construction of a tableau, i.e., the product of M with a syntactic model for the formula $\varphi=\neg \psi$ (solve existential model checking)
- The states of the tableau contains sets of subformulas of φ (Hintikka sets) from the closure of φ
- We restrict the construction to formulas with \mathbf{X} and \mathbf{U}

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $c l(\varphi)$ is the smallest set of formulas that contains φ and such that:

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $c l(\varphi)$ is the smallest set of formulas that contains φ and such that:
- it contains the subformulas of φ

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $c l(\varphi)$ is the smallest set of formulas that contains φ and such that:
- it contains the subformulas of φ
- it is closed under negation (we identify $\neg \neg F$ and F):

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $c l(\varphi)$ is the smallest set of formulas that contains φ and such that:
- it contains the subformulas of φ
- it is closed under negation (we identify $\neg \neg F$ and F):
- if $\neg \mathbf{X} \psi \in c /(\varphi)$, then $\mathbf{X} \neg \psi \in c^{\prime}(\varphi)$

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $c l(\varphi)$ is the smallest set of formulas that contains φ and such that:
- it contains the subformulas of φ
- it is closed under negation (we identify $\neg \neg F$ and F):
- if $\neg \mathbf{X} \psi \in c l(\varphi)$, then $\mathbf{X} \neg \psi \in c^{\prime}(\varphi)$
- if $\psi_{1} \mathbf{U} \psi_{2} \in c l(\varphi)$, then $\left\{\psi_{1}, \psi_{2}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \subseteq c l(\varphi)$ (we use the expansion axiom)

Closure of a formula

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $c l(\varphi)$ is the smallest set of formulas that contains φ and such that:
- it contains the subformulas of φ
- it is closed under negation (we identify $\neg \neg F$ and F):
- if $\neg \mathbf{X} \psi \in c l(\varphi)$, then $\mathbf{X} \neg \psi \in c^{\prime}(\varphi)$
- if $\psi_{1} \mathbf{U} \psi_{2} \in c l(\varphi)$, then $\left\{\psi_{1}, \psi_{2}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \subseteq c l(\varphi)$ (we use the expansion axiom)
- The cardinality of $c l(\varphi)$ is linear in φ

Example: Closure of a formula

```
cl(p1U | p )
contains
p1
p1,
p
X( (p1 U p p)
and all negated formulas
```


Maximally Consistent Set

A set $X \subseteq c l(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in c l(\varphi), \psi \in X$ or $\neg \psi \in X$

Maximally Consistent Set

A set $X \subseteq c l(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in c l(\varphi), \psi \in X$ or $\neg \psi \in X$
- (logically consistent) for each $\psi \in c l(\varphi), \psi \in X$ iff $\neg \psi \notin X$

Maximally Consistent Set

A set $X \subseteq c l(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in c l(\varphi), \psi \in X$ or $\neg \psi \in X$
- (logically consistent) for each $\psi \in c l(\varphi), \psi \in X$ iff $\neg \psi \notin X$
- (logically consistent) for each $\psi_{1} \vee \psi_{2} \in c l(\varphi)$, $\psi_{1} \vee \psi_{2} \in X$ iff $\psi_{1} \in X$ or $\psi_{2} \in X$

Maximally Consistent Set

A set $X \subseteq c l(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in c l(\varphi), \psi \in X$ or $\neg \psi \in X$
- (logically consistent) for each $\psi \in c l(\varphi), \psi \in X$ iff $\neg \psi \notin X$
- (logically consistent) for each $\psi_{1} \vee \psi_{2} \in c l(\varphi)$, $\psi_{1} \vee \psi_{2} \in X$ iff $\psi_{1} \in X$ or $\psi_{2} \in X$
- (locally consistent) for each $\psi_{1} \mathbf{U} \psi_{2} \in c l(\varphi)$, $\psi_{1} \mathbf{U} \psi_{2} \in X$ iff either $\psi_{2} \in X$, or $\left(\left\{\psi_{1}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \subseteq X\right)$

Tableau

Fixed a model M :

- Nodes $=$ atoms of the form $\left\langle s_{A}, K_{A}\right\rangle$ where s_{A} is a state in M and K_{A} is a maximal consistent set compatible with the labelling of s_{A}
- Edge $=$ From $\left\langle s_{A}, K_{A}\right\rangle \longrightarrow\left\langle s_{B}, K_{B}\right\rangle$ iff
- $R\left(s_{A}\right)=s_{B}$ is a transition in M
- For each formula $\mathbf{X} \varphi_{1} \in C L(\varphi), \mathbf{X}_{\varphi_{1}} \in K_{A}$ iff $\varphi_{1} \in K_{B}$

Strongly Connected Component

A strongly connected component of a graph is a subgraph C s.t. for each pair $\left\langle n, n^{\prime}\right\rangle$ of nodes in C there exists a path from n to n^{\prime}

Self-fulfilling

A strongly connected component C is self-fulfilling iff: for each atom B in C and for each formula $\varphi_{1} \mathbf{U} \varphi_{2} \in B$, there exists an atom B^{\prime} in C such that $\varphi_{2} \in K_{B^{\prime}}$

Theorem [Pnueli-Lichtenstein]

- Let G be the tableau associated to M and ψ
- $M, s \models_{\exists} \psi$ iff:
- there exists an atom $A=\langle s, K\rangle$ in G s.t. $\psi \in K$
- there exists a path in G from A to a self-fulfilling strongly connected component C of G

Depth-First Search Algorithm

- Build the tableau with size in $O\left((|M|) \cdot 2^{|\varphi|}\right)$ (exponential in φ)

Depth-First Search Algorithm

- Build the tableau with size in $O\left((|M|) \cdot 2^{|\varphi|}\right)$ (exponential in φ)
- Search for strongly connected components that are self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based algorithm, linear in the size of the graph)

Depth-First Search Algorithm

- Build the tableau with size in $O\left((|M|) \cdot 2^{|\varphi|}\right)$ (exponential in φ)
- Search for strongly connected components that are self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based algorithm, linear in the size of the graph)

Depth-First Search Algorithm

- Build the tableau with size in $O\left((|M|) \cdot 2^{|\varphi|}\right)$ (exponential in φ)
- Search for strongly connected components that are self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based algorithm, linear in the size of the graph)
- We can use again a DFS for checking reachability of a SFSCC

Complexity

- Complexity of the algorithm: $O\left(|M| \cdot 2^{|\varphi|}\right)$

Complexity

- Complexity of the algorithm: $O\left(|M| \cdot 2^{|\varphi|}\right)$
- φ is often small

Complexity

- Complexity of the algorithm: $O\left(|M| \cdot 2^{|\varphi|}\right)$
- φ is often small
- the problem is the size of M, it can be exponential in its description!

Complexity

- Complexity of the algorithm: $O\left(|M| \cdot 2^{|\varphi|}\right)$
- φ is often small
- the problem is the size of M, it can be exponential in its description!
- The two DFS visits can be nested, and the search of an accepting state can be made on-the-fly (we build the tableau while searching for a lasso)

From Tableau to Automata

- The tableau algorithm can be viewed in terms of automata operation: product and emptiness test

From Tableau to Automata

- The tableau algorithm can be viewed in terms of automata operation: product and emptiness test
- Automata theory allows to exploit optimal algorithms for such operations

From Tableau to Automata

- The tableau algorithm can be viewed in terms of automata operation: product and emptiness test
- Automata theory allows to exploit optimal algorithms for such operations
- We need special automata that accept infinite-words

