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Temporal Logic



Temporal Logic: A Class of Modal Logics

• Modal Logic: alternative notions of truth like is it
possible/necessary that ϕ is true?

• Temporal logic is a special type of modal logic in which the
truth of a formula depends on the time in which it is evaluated

• Typical temporal operators are
• Eventually Φ: in some future instant Φ is true
• Always Φ: in all future instants Φ is true
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Several Types of Temporal Logics

• Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

• Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

• LTL and CTL are incomparable logics: There exist formulas in
one logic that are not expressible in the other

• LTL and CTL are submsumed by CTL∗, which in turn, is
subsumed by the µ-calculus (a fixpoint logic)



Local Model Checking Problem

• Fixed a (Kripke) model M (a transition system), an initial
state s0, and a temporal property ϕ

M, s0 |= ϕ?

where |= = satisfiability relation



Global Model Checking Problem

• Fixed a (Kripke) model M and a temporal property ϕ,
compute all states s such that M, s |= ϕ.

• (Global solves Local)



Linear Temporal Logic



PLTL Syntax

• Atomic Proposition: predicate symbols p, q, r , . . .
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• Atomic Proposition: predicate symbols p, q, r , . . .

• Classical connectives:

¬ψ ϕ ∧ ψ ϕ ∨ ψ ϕ ⊃ ψ
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Temporal Operators

A formula withot modalities at the top level is evaluated in the
current instant
Temporal operators are interpreted over an infinite path in which
states are labeled by sets of propositions:

• Xϕ : ϕ is true in the next time instant

• Fϕ : in the future/eventually ϕ

• Gϕ : globally/always ϕ

• ϕUψ : ϕ until ψ
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Logical equivalences

• The set { ¬, ∨, X, U } is sufficiently complete to define LTL
formulas

• Indeed,
Fϕ ≡ true U ϕ

Gϕ = ¬F¬ϕ
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Traffic Light

• once green, next state is not red

G(green ⊃ ¬Xred)

• eventually, it becomes green

F green

• once green, becomes red after being yellow for some time

G(green ⊃ ((green U yellow) U red))
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Semantics

• An LTL model is an infinite path σ = 〈S ,R , L〉 defined as
• S is a denumerable, non empty set of states
• R : S → S assigns a unique successor R(s) to each state s

(s R(s) R(R(s)) . . . is an infinite sequence of states)
• L : S → 2AP assigns to s ∈ S the set of propositions formulas

that are true in s
• We can represent it as a finite graph (labels over 2AP !)



Satisfiability

• For σ = 〈S ,R , L〉, let R j(s) = R(. . .R(s) . . .)
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j

The relation σ, s |= ϕ (σ satisfies ϕ in s) is defined as
• σ, s |= p if p ∈ L(s)
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Satisfiability

• For σ = 〈S ,R , L〉, let R j(s) = R(. . .R(s) . . .)
︸ ︷︷ ︸

j

The relation σ, s |= ϕ (σ satisfies ϕ in s) is defined as
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• σ, s |= ϕ1 U ϕ2 if
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Example 1

• If pUq holds in s, then Fq holds in s,

• The weak until operator:

p W q ≡ Gp ∨ (p U q)
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Let M be the following model

S0

Q P,QQ

S1 S2 S3 S4

L(s0) = ∅, L(s1) = {q}, L(s2) = {q}, L(s3) = {p, q}, L(s4) = ∅
then

• Xp is true in s2
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Example 2

Let M be the following model

S0

Q P,QQ

S1 S2 S3 S4

L(s0) = ∅, L(s1) = {q}, L(s2) = {q}, L(s3) = {p, q}, L(s4) = ∅
then

• Xp is true in s2

• Fp is true in s0, s1, s2, s3

• Gp is never true

• q U p is true in s1, s2, s3
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Example II

• Let M be the following model

S0 S1 S2 S3

P,Q,T P,Q,R P,S P,R

• then
• Ft is true in s0
• Gp is true in all states
• G Fs is true in all states
• X(r ⊃ (q U s)) is true in s0, s1, s3
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Interesting LTL formulas

• Gp: always p (safety property)

• p ⊃ Fq: if p holds initially, eventually q holds (reachability)

• G Fp: p is true infinitely often (fairness)

• F Gp: when p becomes true, it remains true forever
(eventually permanently)

• G(p ⊃ Fq): globally, if p holds then eventually q holds
(responsiveness)
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Interesting LTL formulas

• GFp 6≡ Fp

• FGp 6≡ Gp



Axioms for LTL: Duality

¬Gϕ ≡ F¬ϕ

¬Fϕ ≡ G¬ϕ

¬Xϕ ≡ X¬ϕ



Axioms for LTL: Expansion

ϕ U ψ ≡ ψ ∨ [ϕ ∧ X(ϕ U ψ)]

Fϕ ≡ ϕ ∨ X Fϕ

Gϕ ≡ ϕ ∧ X Gϕ



Axioms for LTL: Idempotence

G Gϕ ≡ Gϕ

F Fϕ ≡ Fϕ

ϕ U (ϕUψ) ≡ ϕ U ψ

(ϕ U ψ)Uψ ≡ ϕ U ψ



Axioms for LTL: Absorbtion

F G Fϕ ≡ G Fϕ

G F Gϕ ≡ F Gϕ



Axioms for LTL: Commutation

X(ϕ U ψ) ≡ (Xϕ) U (X ψ)



A Deduction System for LTL

Axioms:
All tautologies
X(¬ϕ) ≡ ¬Xϕ
X(ϕ ⊃ ψ) ⊃ Xϕ ⊃ Xψ

Gϕ ⊃ (ϕ ∧ XGϕ)

Rules:

Modus ponens ϕ,ϕ ⊃ ψ ⊢ ψ
Next ϕ ⊢ Xϕ

Indution ϕ ⊃ ψ,ϕ ⊃ Xϕ ⊢ ϕ ⊃ Gψ
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• (¬(A ⊃ B)) ⊃ A [taut]
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Derivation

(XA ⊃ XB) ⊃ X(A ⊃ B)

• (¬(A ⊃ B)) ⊃ A [taut]

• X((¬(A ⊃ B)) ⊃ A) [nex]
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• (¬X(A ⊃ B)) ⊃ X¬B [as before]

• X¬B ⊃ ¬XB

• (¬X(A ⊃ B)) ⊃ ¬XB

• (¬X(A ⊃ B)) ⊃ XA ∧ ¬XB ≡ ¬(XA ⊃ XB)

• (XA ⊃ XB) ⊃ X(A ⊃ B)



Other Theorem

(A ∧ XFA) ⊃ FA

• . . .
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Expressiveness of LTL formulas

• A is true only at the even states s0s2 . . . (false at odd ones)

A ∧ G(A ↔ ¬XA)

• even(A): A is true at the even states (don’t care at odd ones)

A ∧ G(A ⊃ XXA) Is it ok?

• No, it is false if A is true in s1 and false in s3!
Actually, it can not be expressed in LTL



Lemma

Assumptions

• Let M(i) = pi(¬p)pω be the model in which p is true in
s0s1 . . . si , false in state si+1, and true in sj for j > i + 1.

• M(0),M(2),M(4), . . . all satisfy even(p), while
M(1),M(3), . . . don’t



Lemma

• Let ϕ be a formula on predicate p with k occurrences of X

Property
For i > k , the truth of ϕ on M(i) is independent from i
i.e. ϕ has always the same value in pk+1(¬p)pω, pk+2(¬p)pω, . . .
P. Wolper. Temporal Logic can be more expressive
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Proof of the Lemma

By induction on the structure of ϕ.
Let fi be the value of f in M(i):

• ϕ atomic: ϕ = p and p is true in M(i) for all i > 0

• ϕ = Xψ: ϕ in M(i) evaluates as ψ in M(i − 1), but ψ has
k − 1 occurrences of next, so we can apply the ind. hyp.

• ϕ = Gψ, i.e., ϕ ≡ ψ ∧ XGψ, then
ϕi ≡ ψi ∧ ψi−1 ∧ . . . ∧ ψk+1 ∧ ϕk , but by ind. hyp.
ψi ∧ . . . ∧ψk+1 ≡ ψk+1 have the same num. of occurrences of
X as ϕ, i.e., ϕi ≡ ψk+1 ∧ ϕk (independent from i)

• etc.
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How to express even(p)?

• Automata: that recognizes p, true, p, true, . . . (infinite word)

• ETL (Wolper): We can express even(p) by quantifying over
predicates:

∃q.(q ∧ G(q ⊃ X¬q) ∧ G(¬q ⊃ Xq) ∧G(q ⊃ p))
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• Model checking: Fixed a model M, a state s0 and an LTL
formula ϕ σ, s0 |= ϕ for every σ in M?



Model Checking

Let us consider models with several infinite paths.

• Model checking: Fixed a model M, a state s0 and an LTL
formula ϕ σ, s0 |= ϕ for every σ in M?
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Satisfiability/Validity

• Satisfiability problem: Fixed a formula ϕ, is there an infinite
path σ, and a state s0 s.t. σ, s0 |= ϕ?

• Validity problem: Fixed a formula ϕ, does σ, s0 |= ϕ hold for
every infinite path σ and initial state s0? (dual to satisfiability)

• The problems are decidable but with exponential-time in the
size of ϕ
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Model Checking Algorithm

• Tableau methods

• Büchi Automata (SPIN)

• Alternating Büchi automata



Semantic Tableau in Classical Logic

(See slides on Aulaweb)

• Deductive method for checking a formula



Semantic Tableau in Classical Logic

(See slides on Aulaweb)

• Deductive method for checking a formula

• Goal: build a model using syntactic rules (semantic method)



LTL Model Checking Algorithm



Lichtenstein-Pnueli’s Algorithm: Tableau

• For fixed M, s, ϕ, decide M, s |= ψ

• The algorithm is based on the construction of a tableau, i.e.,
the product of M with a syntactic model for the formula
ϕ = ¬ψ (solve existential model checking)

• The states of the tableau contains sets of subformulas of ϕ
(Hintikka sets) from the closure of ϕ

• We restrict the construction to formulas with X and U
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Closure of a formula

• The closure a formula of ϕ is the set of formulas useful to
satisfy it

• Formally, cl(ϕ) is the smallest set of formulas that contains ϕ
and such that:

• it contains the subformulas of ϕ
• it is closed under negation (we identify ¬¬F and F ):
• if ¬Xψ ∈ cl(ϕ), then X¬ψ ∈ cl(ϕ)
• if ψ1 U ψ2 ∈ cl(ϕ), then {ψ1, ψ2,X(ψ1 U ψ2)} ⊆ cl(ϕ) (we

use the expansion axiom)

• The cardinality of cl(ϕ) is linear in ϕ



Example: Closure of a formula

cl(p1Up2)
contains
p1Up2,
p1,
p2,
X(p1Up2)
and all negated formulas
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Maximally Consistent Set

A set X ⊆ cl(ϕ) is maximally consistent iff:

• (maximal) for each ψ ∈ cl(ϕ), ψ ∈ X or ¬ψ ∈ X

• (logically consistent) for each ψ ∈ cl(ϕ), ψ ∈ X iff ¬ψ 6∈ X

• (logically consistent) for each ψ1 ∨ ψ2 ∈ cl(ϕ),
ψ1 ∨ ψ2 ∈ X iff ψ1 ∈ X or ψ2 ∈ X

• (locally consistent) for each ψ1 U ψ2 ∈ cl(ϕ),
ψ1 U ψ2 ∈ X iff either ψ2 ∈ X , or ({ψ1,X(ψ1 U ψ2)} ⊆ X )



Tableau

Fixed a model M:

• Nodes = atoms of the form 〈sA,KA〉 where sA is a state in M
and KA is a maximal consistent set compatible with the
labelling of sA

• Edge = From 〈sA,KA〉 −→ 〈sB ,KB〉 iff
• R(sA) = sB is a transition in M
• For each formula Xϕ1 ∈ CL(ϕ), Xϕ1 ∈ KA iff ϕ1 ∈ KB



Strongly Connected Component

A strongly connected component of a graph is a subgraph C s.t.
for each pair 〈n, n′〉 of nodes in C there exists a path from n to n′



Self-fulfilling

A strongly connected component C is self-fulfilling iff:
for each atom B in C and for each formula ϕ1 U ϕ2 ∈ B ,
there exists an atom B ′ in C such that ϕ2 ∈ KB′



Theorem [Pnueli-Lichtenstein]

• Let G be the tableau associated to M and ψ

• M, s |=∃ ψ iff:

• there exists an atom A = 〈s,K 〉 in G s.t. ψ ∈ K
• there exists a path in G from A to a self-fulfilling strongly

connected component C of G
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Depth-First Search Algorithm

• Build the tableau with size in O((|M|) · 2|ϕ|) (exponential in
ϕ)

• Search for strongly connected components that are
self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based
algorithm, linear in the size of the graph)

• We can use again a DFS for checking reachability of a SFSCC
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Complexity

• Complexity of the algorithm: O(|M| · 2|ϕ|)
• ϕ is often small
• the problem is the size of M , it can be exponential in its

description!

• The two DFS visits can be nested, and the search of an
accepting state can be made on-the-fly (we build the tableau
while searching for a lasso)
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From Tableau to Automata

• The tableau algorithm can be viewed in terms of automata
operation: product and emptiness test

• Automata theory allows to exploit optimal algorithms for such
operations

• We need special automata that accept infinite-words


