Computer Aided Verification
CAV a.a. 2014/15

Giorgio Delzanno

DIBRIS, Universita di Genova

Temporal Logic

Temporal Logic: A Class of Modal Logics

e Modal Logic: alternative notions of truth like is it
possible/necessary that ¢ is true?

e Temporal logic is a special type of modal logic in which the
truth of a formula depends on the time in which it is evaluated

e Typical temporal operators are
e Eventually ®: in some future instant ® is true
o Always ®: in all future instants @ is true

Several Types of Temporal Logics

e Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

Several Types of Temporal Logics

e Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

e Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

Several Types of Temporal Logics

e Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

e Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

e LTL and CTL are incomparable logics: There exist formulas in
one logic that are not expressible in the other

Several Types of Temporal Logics

e Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

e Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

e LTL and CTL are incomparable logics: There exist formulas in
one logic that are not expressible in the other

Several Types of Temporal Logics

Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

LTL and CTL are incomparable logics: There exist formulas in
one logic that are not expressible in the other

LTL and CTL are submsumed by CTL*, which in turn, is
subsumed by the p-calculus (a fixpoint logic)

Local Model Checking Problem

e Fixed a (Kripke) model M (a transition system), an initial
state sp, and a temporal property ¢

M; so ’:SO?

where |= = satisfiability relation

Global Model Checking Problem

e Fixed a (Kripke) model M and a temporal property ¢,
compute all states s such that M,s = ¢.

¢ (Global solves Local)

Linear Temporal Logic

PLTL Syntax

e Atomic Proposition: predicate symbols p,q,r,...

PLTL Syntax

e Atomic Proposition: predicate symbols p,q,r,...

e Classical connectives:

) oAy pVY 9D

Temporal Operators

A formula withot modalities at the top level is evaluated in the
current instant

Temporal operators are interpreted over an infinite path in which
states are labeled by sets of propositions:

o Xy : pis true in the next time instant

Temporal Operators

A formula withot modalities at the top level is evaluated in the
current instant
Temporal operators are interpreted over an infinite path in which
states are labeled by sets of propositions:

o Xy : pis true in the next time instant

e Fy : in the future/eventually ¢

Temporal Operators

A formula withot modalities at the top level is evaluated in the
current instant

Temporal operators are interpreted over an infinite path in which
states are labeled by sets of propositions:

o Xy : pis true in the next time instant
e Fy : in the future/eventually ¢
e Gy : globally/always ¢

Temporal Operators

A formula withot modalities at the top level is evaluated in the
current instant

Temporal operators are interpreted over an infinite path in which
states are labeled by sets of propositions:

o Xy : pis true in the next time instant
e Fy : in the future/eventually ¢

e Gy : globally/always ¢

e Uy : @ until ¢

Logical equivalences

e Theset { =, Vv, X, U } is sufficiently complete to define LTL
formulas

Logical equivalences

e Theset { =, Vv, X, U } is sufficiently complete to define LTL
formulas
e Indeed,
Fo = trueU p
Ggp = _‘F_‘SO

Traffic Light

e once green, next state is not red

G(green D —Xred)

Traffic Light

e once green, next state is not red
G(green D —Xred)
e eventually, it becomes green

F green

Traffic Light

e once green, next state is not red
G(green D —Xred)
e eventually, it becomes green
F green
e once green, becomes red after being yellow for some time

G(green D ((green U yellow) U red))

Semantics

e An LTL model is an infinite path 0 = (S, R, L) defined as
e S is a denumerable, non empty set of states

Semantics

e An LTL model is an infinite path 0 = (S, R, L) defined as
e S is a denumerable, non empty set of states
e R:S — S assigns a unique successor R(s) to each state s
(s R(s) R(R(s)) ... is an infinite sequence of states)

Semantics

e An LTL model is an infinite path 0 = (S, R, L) defined as

e S is a denumerable, non empty set of states

e R:S — S assigns a unique successor R(s) to each state s
(s R(s) R(R(s)) ... is an infinite sequence of states)

e [:S — 2P assigns to s € S the set of propositions formulas
that are true in s

Semantics

e An LTL model is an infinite path 0 = (S, R, L) defined as
e S is a denumerable, non empty set of states
e R:S — S assigns a unique successor R(s) to each state s
(s R(s) R(R(s)) ... is an infinite sequence of states)
e [:S — 2P assigns to s € S the set of propositions formulas
that are true in s
e We can represent it as a finite graph (labels over 2471)

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
Jj
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
e o,sEpifpel(s)

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
Jj
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
o g,sEpif pel(s)
e o,sE¢ifo,s ¢

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
J
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
e o,sEpifpel(s)
e o,sE¢ifo,s ¢
e o,sEpVYifo,sEporskEY

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
J
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
e o,sEpifpel(s)
e o,sE¢ifo,s ¢
e o,sEpVYifo,sEporskEY

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
J
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
e o,sEpifpel(s)
o,s E¢ifo,slEe
osEeVYifoskEporskEy

;7.,.5 EXpifo,R(s)Ee

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
Jj
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
o g,sEpif pel(s)
o,skE¢ifoso

osEeVYifoskEporskEy
0.5 | X if 0, R(s) | ¢

® 0,5 ': ©®1 U.(pg if
3 > 0. 0,Ri(s) = @2, (Y0 < k< j.o,RKs) = ¢1)

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
J
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
e o,sEpifpel(s)
e o,sE¢ifo,s ¢
e o,sEpVYifo,sEporskEY
e 0,5 Xpif o,R(s) ¢
° O’,S':(plU(pg if
3j > 0. 0,RI(s) = 2, (VO< k <j.o,R(s) = ¢1)

e 0,s =Fpifdj. o, R(s) =g

Satisfiability

e For o =(S,R,L), let Ri(s)=R(...R(s)...)
—_——
J
The relation o, s |= ¢ (o satisfies ¢ in s) is defined as
e o,sEpifpel(s)
e o,sE¢ifo,s ¢
e o,sEpVYifo,sEporskEY
e 0,5 Xpif o,R(s) ¢
° O’,S':(plU(pg if
3j > 0. 0,RI(s) = 2, (VO< k <j.o,R(s) = ¢1)

e 0,s =Fpifdj. o, R(s) =g
e 0,s =GpifVj. o, R(s)E¢

Example 1

e If pUg holds in s, then Fg holds in s,

e The weak until operator:

pWgq = Gp V (pUgq)

Example 2

Let M be the following model

Q

L(so) =0, L(s1) = {q}, L(s2) = {q}, L53) {p,a}, L(sa) =0
then

e Xp is true in s,

Example 2

Let M be the following model

Q

L(so) =0, L(s1) = {q}, L(s2) = {q}, L53) {p,a}, L(sa) =0
then

e Xp is true in s,

e Fpis true in sp, s1, 5,53

Example 2

Let M be the following model

Q

L(so) =0, L(s1) = {q}, L(s2) = {q}, L53) {p,a}, L(sa) =0
then

e Xp is true in s,
e Fpis true in sp, s1, 5,53

e Gp is never true

Example 2

Let M be the following model

Q

L(so) =0, L(s1) = {q}, L(s2) = {q}, L53) {p,a}, L(sa) =0

then

e Xp is true in s,
e Fpis true in sp, s1, 5,53
e Gp is never true

e g U pistruein sy, s, s3

Example Il

e Let M be the following model
PQT PQR RS

e then
e Ftis truein s

P.R

Example Il

e Let M be the following model
PQT PQR RS

e then

e Ftis truein s
e Gp is true in all states

P.R

Example Il

e Let M be the following model
PQT PQR RS

e then
e Ftis truein s
e Gp is true in all states
e G Fs is true in all states

P,R

Example Il

e Let M be the following model
PQ,T PQR P.S PR

Ft is true in sg

Gp is true in all states

G Fs is true in all states

X(r > (g Us))is truein sp, 51,53

Interesting LTL formulas

e Gp: always p (safety property)

Interesting LTL formulas

e Gp: always p (safety property)
e p D Fq: if p holds initially, eventually g holds (reachability)

Interesting LTL formulas

e Gp: always p (safety property)
e p D Fq: if p holds initially, eventually g holds (reachability)
e G Fp: pis true infinitely often (fairness)

Interesting LTL formulas

Gp: always p (safety property)
p D Fq: if p holds initially, eventually g holds (reachability)
G Fp: p is true infinitely often (fairness)

F Gp: when p becomes true, it remains true forever
(eventually permanently)

Interesting LTL formulas

Gp: always p (safety property)

p D Fq: if p holds initially, eventually g holds (reachability)
G Fp: p is true infinitely often (fairness)

F Gp: when p becomes true, it remains true forever
(eventually permanently)

G(p D Fq): globally, if p holds then eventually g holds
(responsiveness)

Interesting LTL formulas

e GFp # Fp

Interesting LTL formulas

e GFp # Fp
° FGp 5_'5 Gp

Axioms for LTL: Duality

-Gp=F-p
—\Fgo = G—\go

—\Xgo = X—|g0

Axioms for LTL: Expansion

pUy =9 Vp A Xe Uy
Fp = ¢ V XFop

Gy = o AN XGp

Axioms for LTL: ldempotence

G Gy =Gyp
FFp=Fp
pU(PU)=p Uy

(P UPUyp =9 Uy

Axioms for LTL: Absorbtion

FGFp=GFp

GF Gy =F Gy

Axioms for LTL: Commutation

X(eUy) = (Xp) U (X9)

A Deduction System for LTL

Axioms:
All tautologies
X(—|g0) = —|Xg0
X(p D) D Xp D Xy
Gy D (¢ A XGyp)
Rules:

Modus ponens ¢, ¢ D 1)
Next o= Xep
Indution ©DY, oD Xpk DGy

Derivation

(XAD XB) D X(ADB)

e (-(AD B)) D A [taut]

Derivation

(XAD XB) D X(ADB)

e (-(AD B)) D A [taut]
e X((—(A D> B)) D A) [nex]

Derivation

(XAD XB) D X(ADB)

(—(A D B)) D A [taut]
X((=(A D B)) D A) [nex]
[X((—=(AD B)) D A)] D [X~(ADB) D XA] (ax)

Derivation

(XAD XB) D X(ADB)

(—(A D B)) D A [taut]

X((—=(A D> B)) D A) [nex]

[X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X=(A D B) D XA (mp)

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex
. [X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X-(A D B) D XA (mp)
. X—|(A D B)=-X(A D B) (ax)

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex
. [((n(AD> B)) D A)] D [X=(AD B) D XA] (ax)
e X—=(AD B) D XA (mp)
e X—(AD B)=-X(ADB) (ax)
° ADB)D XA

—_

/\/‘\/‘\/\

-X

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((+(A > B)) D A) [nex]
[((n(AD> B)) D A)] D [X=(AD B) D XA] (ax)
X-(A D B) D XA (mp)
X-(A D B) = -X(AD B) (ax)
-X(ADB)D XA
(A D B)) D =B [taut]

(=

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex
. [X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X-(A D B) D XA (mp)
Xﬁ(A D B) = -X(AD B) (ax)
-X(ADB)D XA
—(AD B)) D —B [taut]
(=X(A D B)) D X—B [as before]

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex

. [X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X-(A D B) D XA (mp)

Xﬁ(A D B) = -X(AD B) (ax)

-X(ADB)D XA

(—(A > B)) D B [taut]

(=X(A D B)) D X—B [as before]

X-B D> -XB

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex

. [X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X-(A D B) D XA (mp)

Xﬁ(A D B) = -X(AD B) (ax)

-X(ADB)D XA

—(AD B)) D —B [taut]

—X(A D B)) D X—B [as before]

X-B D> -XB

(-X(AD> B)) D —XB

° (
* (

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex

. [X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X-(A D B) D XA (mp)

Xﬁ(A D B) = -X(AD B) (ax)

-X(ADB)D XA

(—(A > B)) D B [taut]

(=X(A D B)) D X—B [as before]

X-B D> -XB

(-X(AD> B)) D —XB

(-X(A D B)) D XAA -XB = ~(XA > XB)

Derivation

(XAD XB) D X(ADB)

. ((AD B)) D A [taut]
X((~(A > B)) > A) [nex
. [X(((AD B)) D A)] D [X—=(AD B) D XA] (ax)
X-(A D B) D XA (mp)
Xﬁ(A D B) = -X(AD B) (ax)
-X(ADB)D XA
(—(A > B)) D B [taut]
(=X(A D B)) D X—B [as before]
X-B D> -XB
(-X(AD> B)) D —XB
(-X(A D B)) D XAA -XB = ~(XA > XB)
(XA D XB) > X(ADB)

Other Theorem

(AAXFA) D FA

Expressiveness of LTL formulas

e Ais true only at the even states sps, ... (false at odd ones)

Expressiveness of LTL formulas

e Ais true only at the even states sps, ... (false at odd ones)

AAG(A & ~XA)

Expressiveness of LTL formulas

e Ais true only at the even states sps, ... (false at odd ones)

AAG(A & ~XA)

e even(A): Ais true at the even states (don't care at odd ones)

Expressiveness of LTL formulas

e Ais true only at the even states sps, ... (false at odd ones)

AAG(A & ~XA)

e even(A): Ais true at the even states (don't care at odd ones)

AAG(AD XXA) Is it ok?

Expressiveness of LTL formulas

e Ais true only at the even states sps, ... (false at odd ones)

AAG(A & ~XA)

e even(A): Ais true at the even states (don't care at odd ones)

AAG(AD XXA) Is it ok?

e No, it is false if A is true in s; and false in s3!
Actually, it can not be expressed in LTL

Lemma

Assumptions

o Let M(i) = p'(=p)p* be the model in which p is true in
S0S1 - - - 5j, false in state s;1, and true in s; for j > i + 1.
e M(0),M(2),M(4),... all satisfy even(p), while
M(1), M(3),... don't

Lemma

e Let ¢ be a formula on predicate p with k occurrences of X

Property

For i > k, the truth of ¢ on M(i) is independent from i
i.e. o has always the same value in pk*1(=p)p®, pkT2(=p)p®,...
P. Wolper. Temporal Logic can be more expressive

Proof of the Lemma

By induction on the structure of ¢.
Let f; be the value of f in M(i):

e atomic: ¢ = p and p is true in M(i) for all i >0

Proof of the Lemma

By induction on the structure of ¢.
Let f; be the value of f in M(i):

e atomic: ¢ = p and p is true in M(i) for all i >0
e o =Xt pin M(i) evaluates as ¢ in M(i — 1), but ¢ has
k — 1 occurrences of next, so we can apply the ind. hyp.

Proof of the Lemma

By induction on the structure of ¢.
Let f; be the value of f in M(i):
e atomic: ¢ = p and p is true in M(i) for all i >0
e o =Xt pin M(i) evaluates as ¢ in M(i — 1), but ¢ has
k — 1 occurrences of next, so we can apply the ind. hyp.
e 0 =Gy, ie., o =y AXGy, then
Yi =i Ni—1 Ao Abrg1 A @k, but by ind. hyp.
Vi N ... ANprs1 = Pr41 have the same num. of occurrences of
X as ¢, i.e., pi = Vi1 A ok (independent from i)

Proof of the Lemma

By induction on the structure of ¢.
Let f; be the value of f in M(i):
e atomic: ¢ = p and p is true in M(i) for all i >0
e o =Xt pin M(i) evaluates as ¢ in M(i — 1), but ¢ has
k — 1 occurrences of next, so we can apply the ind. hyp.
e 0 =Gy, ie., o =y AXGy, then

Yi =i Ni—1 Ao Abrg1 A @k, but by ind. hyp.
Vi N ... ANprs1 = Pr41 have the same num. of occurrences of
X as ¢, i.e., pi = Vi1 A ok (independent from i)

e etc.

How to express even(p)?

e Automata: that recognizes p, true, p, true, . .. (infinite word)

How to express even(p)?

e Automata: that recognizes p, true, p, true, . .. (infinite word)

e ETL (Wolper): We can express even(p) by quantifying over
predicates:

3q.(g A G(q D X—q) A G(=q D Xq) AG(q D p))

Model Checking

Let us consider models with several infinite paths.

e Model checking: Fixed a model M, a state sy and an LTL
formula ¢ o0, sy |= ¢ for every o in M?

Model Checking

Let us consider models with several infinite paths.
e Model checking: Fixed a model M, a state sy and an LTL
formula ¢ o0, sy |= ¢ for every o in M?
e Existential Model checking: Fixed a model M, a state sy and
an LTL formula ¢ is there an infinite path o in M s.t.
0,50 = ¢? (dual to the first problem)

Satisfiability /Validity

e Satisfiability problem: Fixed a formula ¢, is there an infinite
path o, and a state sp s.t. 0,50 = ¢?

Satisfiability /Validity

e Satisfiability problem: Fixed a formula ¢, is there an infinite
path o, and a state sp s.t. 0,59 = ¢?

e Validity problem: Fixed a formula ¢, does o, sy = ¢ hold for
every infinite path o and initial state so? (dual to satisfiability)

Satisfiability /Validity

e Satisfiability problem: Fixed a formula ¢, is there an infinite
path o, and a state sp s.t. 0,59 = ¢?

e Validity problem: Fixed a formula ¢, does o, sy = ¢ hold for
every infinite path o and initial state so? (dual to satisfiability)

e The problems are decidable but with exponential-time in the
size of ¢

Model Checking Algorithm

e Tableau methods

Model Checking Algorithm

e Tableau methods
e Biichi Automata (SPIN)

Model Checking Algorithm

e Tableau methods
e Biichi Automata (SPIN)

e Alternating Blchi automata

Semantic Tableau in Classical Logic

(See slides on Aulaweb)

e Deductive method for checking a formula

Semantic Tableau in Classical Logic

(See slides on Aulaweb)
e Deductive method for checking a formula

e Goal: build a model using syntactic rules (semantic method)

LTL Model Checking Algorithm

Lichtenstein-Pnueli's Algorithm: Tableau

For fixed M, s, p, decide M,s =1
The algorithm is based on the construction of a tableau, i.e.,
the product of M with a syntactic model for the formula

¢ = =) (solve existential model checking)

The states of the tableau contains sets of subformulas of ¢
(Hintikka sets) from the closure of ¢

We restrict the construction to formulas with X and U

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

e Formally, cl(y) is the smallest set of formulas that contains ¢
and such that:

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

e Formally, cl(y) is the smallest set of formulas that contains ¢
and such that:

e it contains the subformulas of ¢

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

e Formally, cl(y) is the smallest set of formulas that contains ¢
and such that:

e it contains the subformulas of ¢
e it is closed under negation (we identify =—F and F):

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

e Formally, cl(y) is the smallest set of formulas that contains ¢
and such that:

e it contains the subformulas of ¢

e it is closed under negation (we identify =—F and F):
o if =Xy € cl(p), then X—p € cl(p)

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

e Formally, cl(y) is the smallest set of formulas that contains ¢
and such that:

it contains the subformulas of ¢

it is closed under negation (we identify =—=F and F):

if =X € cl(p), then X—p € cl(p)

if '(/11 U 1/)2 S C/((p), then {wl,'(/JQ,X(wl U wz)} - C/(QD) (We

use the expansion axiom)

Closure of a formula

e The closure a formula of ¢ is the set of formulas useful to
satisfy it

e Formally, cl(y) is the smallest set of formulas that contains ¢
and such that:

it contains the subformulas of ¢

it is closed under negation (we identify =—=F and F):

if =X € cl(p), then X—p € cl(p)

if '(/11 U 1/)2 S C/((p), then {wl,'(/JQ,X(wl U wz)} - C/(QD) (We

use the expansion axiom)

e The cardinality of c/(¢) is linear in ¢

Example: Closure of a formula

cl(p1Up2)

contains

p1Up2,

p1,

P2,

X(p1Up2)

and all negated formulas

Maximally Consistent Set

A set X C cl(y) is maximally consistent iff:
e (maximal) for each ¢ € cl(yp), € X or =¢p € X

Maximally Consistent Set

A set X C cl(y) is maximally consistent iff:
e (maximal) for each ¢ € cl(yp), € X or =¢p € X
e (logically consistent) for each ¥ € cl(p), ¥ € X iff =p & X

Maximally Consistent Set

A set X C cl(y) is maximally consistent iff:
e (maximal) for each ¢ € cl(yp), € X or =¢p € X
e (logically consistent) for each ¥ € cl(p), ¥ € X iff =p & X

e (logically consistent) for each 1 V ¢ € cl(p),
PV € Xiffpy € Xorp € X

Maximally Consistent Set

A set X C cl(y) is maximally consistent iff:
e (maximal) for each ¢ € cl(yp), € X or =¢p € X
e (logically consistent) for each ¥ € cl(p), ¥ € X iff =p & X
e (logically consistent) for each 1 V ¢ € cl(p),
PV € Xiffpy € Xorp € X
e (locally consistent) for each 11 U v € cl(p),
1 U ¢ € X iff either ¢» € X, or ({11, X(¢01 U 12)} C X)

Tableau

Fixed a model M:

e Nodes = atoms of the form (sa, Ka) where sp is a state in M
and K, is a maximal consistent set compatible with the
labelling of sa

e Edge = From (sa, Ka) — (sg, Kg) iff

e R(sa) = sg is a transition in M
e For each formula Xy1 € CL(p), X1 € Ka iff 1 € Kp

Strongly Connected Component

A strongly connected component of a graph is a subgraph C s.t.
for each pair (n,n’) of nodes in C there exists a path from n to n’

Self-fulfilling

A strongly connected component C is self-fulfilling iff:
for each atom B in C and for each formula ¢; U ¢, € B,
there exists an atom B’ in C such that p; € K/

Theorem [Pnueli-Lichtenstein]

e Let G be the tableau associated to M and ¢
e M,s =39 iff:

e there exists an atom A= (s, K) in G s.t. Y € K
e there exists a path in G from A to a self-fulfilling strongly
connected component C of G

Depth-First Search Algorithm

o Build the tableau with size in O((|M]) - 2/#!) (exponential in
%)

Depth-First Search Algorithm

o Build the tableau with size in O((|M]) - 2/#!) (exponential in

)

e Search for strongly connected components that are
self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based
algorithm, linear in the size of the graph)

Depth-First Search Algorithm

o Build the tableau with size in O((|M]) - 2/#!) (exponential in

)

e Search for strongly connected components that are
self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based
algorithm, linear in the size of the graph)

Depth-First Search Algorithm

o Build the tableau with size in O((|M]) - 2/#!) (exponential in

)

e Search for strongly connected components that are
self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based
algorithm, linear in the size of the graph)

e We can use again a DFS for checking reachability of a SFSCC

Complexity

o Complexity of the algorithm: O(|M| - 2/¥])

Complexity

o Complexity of the algorithm: O(|M| - 2/¥])
e ¢ is often small

Complexity

o Complexity of the algorithm: O(|M| - 2/¥])
e ¢ is often small
e the problem is the size of M, it can be exponential in its
description!

Complexity

o Complexity of the algorithm: O(|M| - 2/¥])
e ¢ is often small
e the problem is the size of M, it can be exponential in its
description!
e The two DFS visits can be nested, and the search of an
accepting state can be made on-the-fly (we build the tableau
while searching for a lasso)

From Tableau to Automata

e The tableau algorithm can be viewed in terms of automata
operation: product and emptiness test

From Tableau to Automata

e The tableau algorithm can be viewed in terms of automata
operation: product and emptiness test

e Automata theory allows to exploit optimal algorithms for such
operations

From Tableau to Automata

e The tableau algorithm can be viewed in terms of automata
operation: product and emptiness test

e Automata theory allows to exploit optimal algorithms for such
operations

e We need special automata that accept infinite-words

