Computer Aided Verification CAV a.a. 2014/15

Giorgio Delzanno

DIBRIS, Università di Genova

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Temporal Logic

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?
- Temporal logic is a special type of modal logic in which the truth of a formula depends on the time in which it is evaluated

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Typical temporal operators are
 - Eventually Φ : in some future instant Φ is true
 - Always Φ : in all future instants Φ is true

• Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

 LTL and CTL are submsumed by CTL*, which in turn, is subsumed by the μ-calculus (a fixpoint logic)

Local Model Checking Problem

 Fixed a (Kripke) model M (a transition system), an initial state s₀, and a temporal property φ

$$M, s_0 \models \varphi?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

where $\models =$ satisfiability relation

Global Model Checking Problem

Fixed a (Kripke) model M and a temporal property φ, compute all states s such that M, s ⊨ φ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

(Global solves Local)

Linear Temporal Logic

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Atomic Proposition: predicate symbols *p*, *q*, *r*,...

PLTL Syntax

- Atomic Proposition: predicate symbols *p*, *q*, *r*, ...
- Classical connectives:

$$\neg\psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi$$

A formula withot modalities at the top level is evaluated in the current instant

Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

• $\mathbf{X} \varphi$: φ is true in the next time instant

A formula withot modalities at the top level is evaluated in the current instant

Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi : \varphi$ is true in the next time instant
- $\mathbf{F} \varphi$: in the future/eventually φ

A formula withot modalities at the top level is evaluated in the current instant

Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi : \varphi$ is true in the next time instant
- $\mathbf{F} \varphi$: in the future/eventually φ
- $\mathbf{G} \varphi$: globally/always φ

A formula withot modalities at the top level is evaluated in the current instant

Temporal operators are interpreted over an infinite path in which states are labeled by sets of propositions:

- $\mathbf{X} \varphi : \varphi$ is true in the next time instant
- $\mathbf{F} \varphi$: in the future/eventually φ
- $\mathbf{G} \varphi$: globally/always φ
- $\varphi \mathbf{U} \psi : \varphi$ until ψ

Logical equivalences

• The set { \neg , \lor , X, U } is sufficiently complete to define LTL formulas

Logical equivalences

- The set { \neg , \lor , X, U } is sufficiently complete to define LTL formulas
- Indeed,

$$\mathbf{F} arphi \equiv true \ \mathbf{U} \ arphi \ \mathbf{G} arphi = \neg \mathbf{F} \neg arphi$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Traffic Light

• once green, next state is not red

 $G(green \supset \neg Xred)$

Traffic Light

• once green, next state is not red

 $G(green \supset \neg Xred)$

• eventually, it becomes green

F green

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Traffic Light

once green, next state is not red

 $G(green \supset \neg Xred)$

• eventually, it becomes green

F green

• once green, becomes red after being yellow for some time

 $G(green \supset ((green \ U \ yellow) \ U \ red))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• An LTL model is an infinite path $\sigma = \langle S, R, L \rangle$ defined as

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• S is a denumerable, non empty set of states

- An LTL model is an infinite path $\sigma = \langle S, R, L \rangle$ defined as
 - S is a denumerable, non empty set of states
 - R: S → S assigns a unique successor R(s) to each state s (s R(s) R(R(s)) ... is an infinite sequence of states)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

- An LTL model is an infinite path $\sigma = \langle S, R, L \rangle$ defined as
 - S is a denumerable, non empty set of states
 - $R: S \to S$ assigns a unique successor R(s) to each state s (s $R(s) R(R(s)) \dots$ is an infinite sequence of states)
 - $L: S \to 2^{AP}$ assigns to $s \in S$ the set of propositions formulas that are true in s

- An LTL model is an infinite path $\sigma = \langle S, R, L \rangle$ defined as
 - S is a denumerable, non empty set of states
 - R: S → S assigns a unique successor R(s) to each state s
 (s R(s) R(R(s)) ... is an infinite sequence of states)
 - $L: S \rightarrow 2^{AP}$ assigns to $s \in S$ the set of propositions formulas that are true in s

• We can represent it as a finite graph (labels over 2^{AP}!)

• For
$$\sigma = \langle S, R, L \rangle$$
, let $R^{j}(s) = \underbrace{R(\dots R(s) \dots)}_{j}$
The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as
• $\sigma, s \models p$ if $p \in L(s)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For
$$\sigma = \langle S, R, L \rangle$$
, let $R^j(s) = \underbrace{R(\dots R(s) \dots)}_{j}$
The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

•
$$\sigma, s \models \neg \phi$$
 if $\sigma, s \not\models \phi$

• For
$$\sigma = \langle S, R, L \rangle$$
, let $R^j(s) = \underbrace{R(\ldots R(s) \ldots)}_{j}$

The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

•
$$\sigma, s \models p \text{ if } p \in L(s)$$

•
$$\sigma, s \models \neg \phi$$
 if $\sigma, s \not\models \phi$

•
$$\sigma, s \models \varphi \lor \psi$$
 if $\sigma, s \models \varphi$ or $s \models \psi$

• For
$$\sigma = \langle S, R, L \rangle$$
, let $R^{j}(s) = \underbrace{R(\dots R(s) \dots)}_{j}$
The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as
• $\sigma, s \models p$ if $p \in L(s)$
• $\sigma, s \models \neg \phi$ if $\sigma, s \not\models \phi$
• $\sigma, s \models \varphi \lor \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
• ...

• For
$$\sigma = \langle S, R, L \rangle$$
, let $R^j(s) = \underbrace{R(\dots R(s) \dots)}_{j}$
The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as

•
$$\sigma, s \models p \text{ if } p \in L(s)$$

• $\sigma, s \models \neg \phi \text{ if } \sigma, s \not\models \phi$
• $\sigma, s \models \varphi \lor \psi \text{ if } \sigma, s \models \varphi \text{ or } s \models \psi$
• ...
• $\sigma, s \models \mathbf{X}\varphi \text{ if } \sigma, R(s) \models \varphi$

• For
$$\sigma = \langle S, R, L \rangle$$
, let $R^{j}(s) = \underbrace{R(\dots R(s)\dots)}_{j}$
The relation $\sigma, s \models \varphi$ (σ satisfies φ in s) is defined as
• $\sigma, s \models p$ if $p \in L(s)$
• $\sigma, s \models \neg \phi$ if $\sigma, s \not\models \phi$
• $\sigma, s \models \varphi \lor \psi$ if $\sigma, s \models \varphi$ or $s \models \psi$
• \dots
• $\sigma, s \models X \varphi$ if $\sigma, R(s) \models \varphi$

$$\exists j \geq 0. \ \sigma, R^{j}(s) \models \varphi_{2}, \ (\forall 0 \leq k < j. \ \sigma, R^{k}(s) \models \varphi_{1})$$

◆□ > ◆□ > ◆豆 > ◆豆 > ●

æ

•
$$\sigma, s \models \mathbf{F}\varphi$$
 if $\exists j. \sigma, R^j(s) \models \varphi$

•
$$\sigma, s \models \mathbf{F}\varphi$$
 if $\exists j. \sigma, R^j(s) \models \varphi$
• $\sigma, s \models \mathbf{G}\varphi$ if $\forall j. \sigma, R^j(s) \models \varphi$

Example 1

- If *p***U***q* holds in *s*, then **F***q* holds in *s*,
- The weak until operator:

$$p \mathbf{W} q \equiv \mathbf{G} p \lor (p \mathbf{U} q)$$

Example 2

Let M be the following model

 $L(s_0) = \emptyset$, $L(s_1) = \{q\}$, $L(s_2) = \{q\}$, $L(s_3) = \{p, q\}$, $L(s_4) = \emptyset$ then

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• **X**p is true in s₂
Example 2

Let M be the following model

 $L(s_0) = \emptyset$, $L(s_1) = \{q\}$, $L(s_2) = \{q\}$, $L(s_3) = \{p, q\}$, $L(s_4) = \emptyset$ then

- **X**p is true in s₂
- **F***p* is true in *s*₀, *s*₁, *s*₂, *s*₃

Example 2

Let M be the following model

 $L(s_0) = \emptyset$, $L(s_1) = \{q\}$, $L(s_2) = \{q\}$, $L(s_3) = \{p, q\}$, $L(s_4) = \emptyset$ then

- **X**p is true in s₂
- **F***p* is true in *s*₀, *s*₁, *s*₂, *s*₃
- **G***p* is never true

Example 2

Let M be the following model

 $L(s_0) = \emptyset$, $L(s_1) = \{q\}$, $L(s_2) = \{q\}$, $L(s_3) = \{p, q\}$, $L(s_4) = \emptyset$ then

- Xp is true in s₂
- **F***p* is true in *s*₀, *s*₁, *s*₂, *s*₃
- **G***p* is never true
- *q* **U** *p* is true in *s*₁, *s*₂, *s*₃

• then

• **F**t is true in s₀

• Let *M* be the following model P,Q,T P,Q,R P,S P,R S0 S1 S2 S3

then

- **F**t is true in s₀
- **G***p* is true in all states

P,R

S3

<ロ> (四) (四) (三) (三) (三) (三)

• Let *M* be the following model P,Q,T P,Q,R P,SS0 S1 S2 S2

• then

- Ft is true in s₀
- **G***p* is true in all states
- G Fs is true in all states

• Let *M* be the following model

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Ft is true in s₀
- **G***p* is true in all states
- G Fs is true in all states
- $X(r \supset (q \ U \ s))$ is true in s_0, s_1, s_3

• **G***p*: always *p* (safety property)

- **G***p*: always *p* (safety property)
- $p \supset \mathbf{F}q$: if p holds initially, eventually q holds (reachability)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- **G***p*: always *p* (safety property)
- $p \supset \mathbf{F}q$: if p holds initially, eventually q holds (reachability)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• **G F***p*: *p* is true infinitely often (fairness)

- **G***p*: always *p* (safety property)
- $p \supset \mathbf{F}q$: if p holds initially, eventually q holds (reachability)

A D M 4 目 M 4 日 M 4 1 H 4

- **G F***p*: *p* is true infinitely often (fairness)
- **F G***p*: when *p* becomes true, it remains true forever (eventually permanently)

- **G***p*: always *p* (safety property)
- $p \supset \mathbf{F}q$: if p holds initially, eventually q holds (reachability)
- **G F***p*: *p* is true infinitely often (fairness)
- **F G***p*: when *p* becomes true, it remains true forever (eventually permanently)
- G(p ⊃ Fq): globally, if p holds then eventually q holds (responsiveness)

• **GF** $p \neq$ **F**p

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- **GF** $p \not\equiv$ **F**p
- FG $p \not\equiv$ Gp

Axioms for LTL: Duality

$$\neg \mathbf{G}\varphi \equiv \mathbf{F}\neg\varphi$$
$$\neg \mathbf{F}\varphi \equiv \mathbf{G}\neg\varphi$$
$$\neg \mathbf{X}\varphi \equiv \mathbf{X}\neg\varphi$$

Axioms for LTL: Expansion

$$\varphi \mathbf{U} \psi \equiv \psi \lor [\varphi \land \mathbf{X}(\varphi \mathbf{U} \psi)]$$
$$\mathbf{F}\varphi \equiv \varphi \lor \mathbf{X} \mathbf{F}\varphi$$
$$\mathbf{G}\varphi \equiv \varphi \land \mathbf{X} \mathbf{G}\varphi$$

Axioms for LTL: Idempotence

$$\mathbf{G} \ \mathbf{G} \varphi \equiv \mathbf{G} \varphi$$
$$\mathbf{F} \ \mathbf{F} \varphi \equiv \mathbf{F} \varphi$$
$$\varphi \ \mathbf{U} \ (\varphi \mathbf{U} \psi) \equiv \varphi \ \mathbf{U} \ \psi$$

$$\varphi \mathbf{U} (\varphi \mathbf{U} \psi) \equiv \varphi \mathbf{U} \psi$$

$$(\varphi \ \mathbf{U} \ \psi) \mathbf{U} \psi \equiv \varphi \ \mathbf{U} \ \psi$$

Axioms for LTL: Absorbtion

$\mathbf{F} \ \mathbf{G} \ \mathbf{F} \varphi \equiv \mathbf{G} \ \mathbf{F} \varphi$

$\mathbf{G} \ \mathbf{F} \ \mathbf{G} \varphi \equiv \mathbf{F} \ \mathbf{G} \varphi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Axioms for LTL: Commutation

$\mathbf{X}(\varphi \ \mathbf{U} \ \psi) \equiv (\mathbf{X}\varphi) \ \mathbf{U} \ (\mathbf{X} \ \psi)$

A Deduction System for LTL

Axioms:

$$\begin{array}{l} All \ tautologies \\ \mathbf{X}(\neg \varphi) \equiv \neg \mathbf{X}\varphi \\ \mathbf{X}(\varphi \supset \psi) \supset \mathbf{X}\varphi \supset \mathbf{X}\psi \\ \mathbf{G}\varphi \supset (\varphi \land \mathbf{X}\mathbf{G}\varphi) \end{array}$$

Rules:

$$\begin{array}{lll} \textit{Modus ponens} & \varphi, \varphi \supset \psi \vdash \psi \\ \textit{Next} & \varphi \vdash \mathbf{X}\varphi \\ \textit{Indution} & \varphi \supset \psi, \varphi \supset \mathbf{X}\varphi \vdash \varphi \supset \mathbf{G}\psi \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

• $(\neg(A \supset B)) \supset A$ [taut]

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

- $(\neg(A \supset B)) \supset A$ [taut]
- $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
- $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

- $(\neg(A \supset B)) \supset A$ [taut] • $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex] • $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
- $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A \pmod{\mathbf{mp}}$

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)

• $\mathbf{X} \neg (A \supset B) \equiv \neg \mathbf{X} (A \supset B)$ (ax)

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \equiv \neg \mathbf{X}(A \supset B)$ (ax)

•
$$\neg \mathbf{X}(A \supset B) \supset \mathbf{X}A$$

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \equiv \neg \mathbf{X}(A \supset B)$ (ax)
• $\neg \mathbf{X}(A \supset B) \supset \mathbf{X}A$

•
$$(\neg(A \supset B)) \supset \neg B$$
 [taut]

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \equiv \neg \mathbf{X}(A \supset B)$ (ax)
• $\neg \mathbf{X}(A \supset B) \supset \mathbf{X}A$
• $(\neg(A \supset B)) \supset \neg B$ [taut]

• $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X} \neg B$ [as before]

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $(\neg (A \supset B)) \supset \mathbf{X}A$ [as before]
• $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X}B$ [as before]
• $\mathbf{X} \neg B \supset \neg \mathbf{X}B$

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $(\neg(A \supset B)) \supset \mathbf{X}A$ [ax)
• $(\neg(A \supset B)) \supset \neg B$ [taut]
• $(\neg(A \supset B)) \supset \neg B$ [taut]
• $(\neg(A \supset B)) \supset \nabla \neg B$ [as before]
• $\mathbf{X} \neg B \supset \neg \mathbf{X}B$
• $(\neg(\mathbf{X}(A \supset B)) \supset \neg \mathbf{X}B$

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $X((\neg(A \supset B)) \supset A)$ [nex]
• $[X((\neg(A \supset B)) \supset A)] \supset [X \neg (A \supset B) \supset XA]$ (ax)
• $X \neg (A \supset B) \supset XA$ (mp)
• $X \neg (A \supset B) \supseteq \neg X(A \supset B)$ (ax)
• $\neg X(A \supset B) \supset XA$
• $(\neg(A \supset B)) \supset \neg B$ [taut]
• $(\neg X(A \supset B)) \supset \neg XB$
• $(\neg X(A \supset B)) \supset \neg XB$
• $(\neg X(A \supset B)) \supset XA \land \neg XB \equiv \neg(XA \supset XB)$

$$(\mathbf{X} A \supset \mathbf{X} B) \supset \mathbf{X} (A \supset B)$$

•
$$(\neg(A \supset B)) \supset A$$
 [taut]
• $\mathbf{X}((\neg(A \supset B)) \supset A)$ [nex]
• $[\mathbf{X}((\neg(A \supset B)) \supset A)] \supset [\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A]$ (ax)
• $\mathbf{X} \neg (A \supset B) \supset \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $\mathbf{X} \neg (A \supset B) \supseteq \mathbf{X}A$ (mp)
• $(\neg \mathbf{X}(A \supset B)) \supset \mathbf{X}B$ [taut]
• $(\neg \mathbf{X}(A \supset B)) \supset \nabla \mathbf{X} \neg B$ [as before]
• $\mathbf{X} \neg B \supset \neg \mathbf{X}B$
• $(\neg \mathbf{X}(A \supset B)) \supset \neg \mathbf{X}B$
• $(\neg \mathbf{X}(A \supset B)) \supset \nabla \mathbf{X}A \land \neg \mathbf{X}B \equiv \neg (\mathbf{X}A \supset \mathbf{X}B)$
• $(\mathbf{X}A \supset \mathbf{X}B) \supset \mathbf{X}(A \supset B)$

Other Theorem

$(A \land \mathbf{XF}A) \supset \mathbf{F}A$

Expressiveness of LTL formulas

• A is true only at the even states $s_0 s_2 \dots$ (false at odd ones)

Expressiveness of LTL formulas

• A is true only at the even states $s_0 s_2 \dots$ (false at odd ones)

 $A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X}A)$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Expressiveness of LTL formulas

• A is true only at the even states $s_0 s_2 \dots$ (false at odd ones)

 $A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X}A)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• even(A): A is true at the even states (don't care at odd ones)
Expressiveness of LTL formulas

• A is true only at the even states $s_0 s_2 \dots$ (false at odd ones)

 $A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X}A)$

• even(A): A is true at the even states (don't care at odd ones)

 $A \wedge \mathbf{G}(A \supset \mathbf{XX}A)$ Is it ok?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Expressiveness of LTL formulas

• A is true only at the even states $s_0 s_2 \dots$ (false at odd ones)

 $A \wedge \mathbf{G}(A \leftrightarrow \neg \mathbf{X}A)$

• even(A): A is true at the even states (don't care at odd ones)

 $A \wedge \mathbf{G}(A \supset \mathbf{XX}A)$ Is it ok?

• No, it is false if A is true in s₁ and false in s₃! Actually, it can not be expressed in LTL

Lemma

Assumptions

• Let $M(i) = p^i(\neg p)p^{\omega}$ be the model in which p is true in $s_0s_1 \dots s_i$, false in state s_{i+1} , and true in s_j for j > i + 1.

 M(0), M(2), M(4), ... all satisfy even(p), while M(1), M(3), ... don't

Lemma

Let φ be a formula on predicate p with k occurrences of X
Property
For i > k, the truth of φ on M(i) is independent from i
i.e. φ has always the same value in p^{k+1}(¬p)p^ω, p^{k+2}(¬p)p^ω,...
P. Wolper. Temporal Logic can be more expressive

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

By induction on the structure of φ . Let f_i be the value of f in M(i):

• φ atomic: $\varphi = p$ and p is true in M(i) for all i > 0

By induction on the structure of φ . Let f_i be the value of f in M(i):

- φ atomic: $\varphi = p$ and p is true in M(i) for all i > 0
- φ = Xψ: φ in M(i) evaluates as ψ in M(i − 1), but ψ has k − 1 occurrences of next, so we can apply the ind. hyp.

By induction on the structure of φ . Let f_i be the value of f in M(i):

- φ atomic: $\varphi = p$ and p is true in M(i) for all i > 0
- φ = Xψ: φ in M(i) evaluates as ψ in M(i − 1), but ψ has k − 1 occurrences of next, so we can apply the ind. hyp.

•
$$\varphi = \mathbf{G}\psi$$
, i.e., $\varphi \equiv \psi \wedge \mathbf{X}\mathbf{G}\psi$, then
 $\varphi_i \equiv \psi_i \wedge \psi_{i-1} \wedge \ldots \wedge \psi_{k+1} \wedge \varphi_k$, but by ind. hyp.
 $\psi_i \wedge \ldots \wedge \psi_{k+1} \equiv \psi_{k+1}$ have the same num. of occurrences of
X as φ , i.e., $\varphi_i \equiv \psi_{k+1} \wedge \varphi_k$ (independent from *i*)

By induction on the structure of φ . Let f_i be the value of f in M(i):

- φ atomic: $\varphi = p$ and p is true in M(i) for all i > 0
- φ = Xψ: φ in M(i) evaluates as ψ in M(i − 1), but ψ has k − 1 occurrences of next, so we can apply the ind. hyp.

•
$$\varphi = \mathbf{G}\psi$$
, i.e., $\varphi \equiv \psi \wedge \mathbf{X}\mathbf{G}\psi$, then
 $\varphi_i \equiv \psi_i \wedge \psi_{i-1} \wedge \ldots \wedge \psi_{k+1} \wedge \varphi_k$, but by ind. hyp.
 $\psi_i \wedge \ldots \wedge \psi_{k+1} \equiv \psi_{k+1}$ have the same num. of occurrences of
X as φ , i.e., $\varphi_i \equiv \psi_{k+1} \wedge \varphi_k$ (independent from *i*)

etc.

How to express even(p)?

• Automata: that recognizes *p*, *true*, *p*, *true*, ... (infinite word)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

How to express even(p)?

- Automata: that recognizes *p*, *true*, *p*, *true*, ... (infinite word)
- ETL (Wolper): We can express *even*(*p*) by quantifying over predicates:

$$\exists q.(q \land \mathsf{G}(q \supset \mathsf{X} \neg q) \land \mathsf{G}(\neg q \supset \mathsf{X}q) \land \mathsf{G}(q \supset p))$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Model Checking

Let us consider models with several infinite paths.

Model checking: Fixed a model *M*, a state s₀ and an LTL formula φ σ, s₀ ⊨ φ for every σ in *M*?

Model Checking

Let us consider models with several infinite paths.

- Model checking: Fixed a model *M*, a state s₀ and an LTL formula φ σ, s₀ ⊨ φ for every σ in *M*?
- Existential Model checking: Fixed a model M, a state s₀ and an LTL formula φ is there an infinite path σ in M s.t. σ, s₀ ⊨ φ? (dual to the first problem)

Satisfiability/Validity

 Satisfiability problem: Fixed a formula φ, is there an infinite path σ, and a state s₀ s.t. σ, s₀ ⊨ φ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Satisfiability/Validity

- Satisfiability problem: Fixed a formula φ, is there an infinite path σ, and a state s₀ s.t. σ, s₀ ⊨ φ?
- Validity problem: Fixed a formula φ, does σ, s₀ ⊨ φ hold for every infinite path σ and initial state s₀? (dual to satisfiability)

Satisfiability/Validity

- Satisfiability problem: Fixed a formula φ, is there an infinite path σ, and a state s₀ s.t. σ, s₀ ⊨ φ?
- Validity problem: Fixed a formula φ, does σ, s₀ ⊨ φ hold for every infinite path σ and initial state s₀? (dual to satisfiability)
- The problems are decidable but with exponential-time in the size of φ

Model Checking Algorithm

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Tableau methods

Model Checking Algorithm

- Tableau methods
- Büchi Automata (SPIN)

Model Checking Algorithm

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Tableau methods
- Büchi Automata (SPIN)
- Alternating Büchi automata

Semantic Tableau in Classical Logic

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

(See slides on Aulaweb)

• Deductive method for checking a formula

Semantic Tableau in Classical Logic

(See slides on Aulaweb)

- Deductive method for checking a formula
- Goal: build a model using syntactic rules (semantic method)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

LTL Model Checking Algorithm

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Lichtenstein-Pnueli's Algorithm: Tableau

- For fixed M, s, φ , decide $M, s \models \psi$
- The algorithm is based on the construction of a tableau, i.e., the product of M with a syntactic model for the formula $\varphi = \neg \psi$ (solve existential model checking)
- The states of the tableau contains sets of subformulas of φ (Hintikka sets) from the closure of φ

- We restrict the construction to formulas with ${\bf X}$ and ${\bf U}$

- The closure a formula of φ is the set of formulas useful to satisfy it

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $cl(\varphi)$ is the smallest set of formulas that contains φ and such that:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $cl(\varphi)$ is the smallest set of formulas that contains φ and such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• it contains the subformulas of φ

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $cl(\varphi)$ is the smallest set of formulas that contains φ and such that:

- it contains the subformulas of φ
- it is closed under negation (we identify $\neg \neg F$ and F):

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $cl(\varphi)$ is the smallest set of formulas that contains φ and such that:

▲日▼▲□▼▲□▼▲□▼ □ ののの

- it contains the subformulas of φ
- it is closed under negation (we identify $\neg \neg F$ and F):
- if $\neg X\psi \in cl(\varphi)$, then $X\neg \psi \in cl(\varphi)$

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $cl(\varphi)$ is the smallest set of formulas that contains φ and such that:
 - it contains the subformulas of φ
 - it is closed under negation (we identify $\neg \neg F$ and F):
 - if $\neg X \psi \in cl(\varphi)$, then $X \neg \psi \in cl(\varphi)$
 - if $\psi_1 \cup \psi_2 \in cl(\varphi)$, then $\{\psi_1, \psi_2, \mathbf{X}(\psi_1 \cup \psi_2)\} \subseteq cl(\varphi)$ (we use the expansion axiom)

- The closure a formula of φ is the set of formulas useful to satisfy it
- Formally, $cl(\varphi)$ is the smallest set of formulas that contains φ and such that:
 - it contains the subformulas of φ
 - it is closed under negation (we identify $\neg \neg F$ and F):
 - if $\neg X \psi \in cl(\varphi)$, then $X \neg \psi \in cl(\varphi)$
 - if ψ₁ U ψ₂ ∈ cl(φ), then {ψ₁, ψ₂, X(ψ₁ U ψ₂)} ⊆ cl(φ) (we use the expansion axiom)

• The cardinality of $cl(\varphi)$ is linear in φ

Example: Closure of a formula

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

 $cl(p_1 U p_2)$ contains $p_1 U p_2$, p_1 , p_2 , $X(p_1 U p_2)$ and all negated formulas

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

A set $X \subseteq cl(\varphi)$ is maximally consistent iff:

• (maximal) for each $\psi \in cl(\varphi)$, $\psi \in X$ or $\neg \psi \in X$

A set $X \subseteq cl(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in cl(\varphi)$, $\psi \in X$ or $\neg \psi \in X$
- (logically consistent) for each $\psi \in cl(\varphi)$, $\psi \in X$ iff $\neg \psi \notin X$

▲日▼▲□▼▲□▼▲□▼ □ ののの

A set $X \subseteq cl(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in cl(\varphi)$, $\psi \in X$ or $\neg \psi \in X$
- (logically consistent) for each $\psi \in cl(\varphi)$, $\psi \in X$ iff $\neg \psi \notin X$

▲日▼▲□▼▲□▼▲□▼ □ ののの

• (logically consistent) for each $\psi_1 \lor \psi_2 \in cl(\varphi)$, $\psi_1 \lor \psi_2 \in X$ iff $\psi_1 \in X$ or $\psi_2 \in X$

A set $X \subseteq cl(\varphi)$ is maximally consistent iff:

- (maximal) for each $\psi \in cl(\varphi)$, $\psi \in X$ or $\neg \psi \in X$
- (logically consistent) for each $\psi \in cl(\varphi)$, $\psi \in X$ iff $\neg \psi \notin X$
- (logically consistent) for each ψ₁ ∨ ψ₂ ∈ cl(φ), ψ₁ ∨ ψ₂ ∈ X iff ψ₁ ∈ X or ψ₂ ∈ X
- (locally consistent) for each ψ₁ U ψ₂ ∈ cl(φ),
 ψ₁ U ψ₂ ∈ X iff either ψ₂ ∈ X, or ({ψ₁, X(ψ₁ U ψ₂)} ⊆ X)

Tableau

Fixed a model *M*:

- Nodes = atoms of the form (s_A, K_A) where s_A is a state in M and K_A is a maximal consistent set compatible with the labelling of s_A
- Edge = From $\langle s_A, K_A \rangle \longrightarrow \langle s_B, K_B \rangle$ iff
 - $R(s_A) = s_B$ is a transition in M
 - For each formula Xφ₁ ∈ CL(φ), Xφ₁ ∈ K_A iff φ₁ ∈ K_B

Strongly Connected Component

A strongly connected component of a graph is a subgraph C s.t. for each pair $\langle n, n' \rangle$ of nodes in C there exists a path from n to n'

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @
Self-fulfilling

A strongly connected component *C* is self-fulfilling iff: for each atom *B* in *C* and for each formula $\varphi_1 \mathbf{U} \varphi_2 \in B$, there exists an atom *B'* in *C* such that $\varphi_2 \in K_{B'}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem [Pnueli-Lichtenstein]

- Let G be the tableau associated to M and ψ
- $M, s \models_\exists \psi$ iff:
 - there exists an atom $A = \langle s, K \rangle$ in G s.t. $\psi \in K$
 - there exists a path in *G* from *A* to a self-fulfilling strongly connected component *C* of *G*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Build the tableau with size in $O((|M|) \cdot 2^{|\varphi|})$ (exponential in φ)

(ロ)、(型)、(E)、(E)、 E、 の(の)

• Build the tableau with size in $O((|M|) \cdot 2^{|\varphi|})$ (exponential in φ)

• Search for strongly connected components that are self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based algorithm, linear in the size of the graph)

• Build the tableau with size in $O((|M|) \cdot 2^{|\varphi|})$ (exponential in φ)

• Search for strongly connected components that are self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based algorithm, linear in the size of the graph)

- Build the tableau with size in $O((|M|) \cdot 2^{|\varphi|})$ (exponential in φ)
- Search for strongly connected components that are self-fulfilling (SFSCC) (e.g. by using Tarjan DFS-based algorithm, linear in the size of the graph)
- We can use again a DFS for checking reachability of a SFSCC

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Complexity of the algorithm: $O(|M| \cdot 2^{|\varphi|})$

- Complexity of the algorithm: $O(|M| \cdot 2^{|\varphi|})$
 - φ is often small

- Complexity of the algorithm: $O(|M| \cdot 2^{|\varphi|})$
 - φ is often small
 - the problem is the size of *M*, it can be exponential in its description!

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Complexity of the algorithm: $O(|M| \cdot 2^{|\varphi|})$
 - φ is often small
 - the problem is the size of *M*, it can be exponential in its description!
- The two DFS visits can be nested, and the search of an accepting state can be made on-the-fly (we build the tableau while searching for a lasso)

From Tableau to Automata

• The tableau algorithm can be viewed in terms of automata operation: product and emptiness test

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

From Tableau to Automata

- The tableau algorithm can be viewed in terms of automata operation: product and emptiness test
- Automata theory allows to exploit optimal algorithms for such operations

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

From Tableau to Automata

- The tableau algorithm can be viewed in terms of automata operation: product and emptiness test
- Automata theory allows to exploit optimal algorithms for such operations

• We need special automata that accept infinite-words