Specifications in Temporal Logic
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Temporal Logic: A Class of Modal Logics

Modal Logic: alternative notions of truth like is it
possible/necessary that ¢ is true?

In modal logic interpretations are defined as Kripke structures,
i.e., a set of worlds W and an accessibility relation R in

W x W

Propositions are interpreted in each world

Modalities quantify over the set of words accessible from the
current one via R

A specific modal logic is characterized by the properties of R
(reflexivity, transitivity, etc)



Temporal Logic

e Temporal logic is a special type of modal logic in which the
truth of a formula depends on the time in which it is evaluated
e Typical temporal operators are

e Eventually ®: in some future instant @ is true
o Always @: in all future instants @ is true
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Several Types of Temporal Logics

Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

LTL and CTL are incomparable logics: There exist formulas in
one logic that are not expressible in the other

LTL and CTL are submsumed by CTL*, which in turn, is
subsumed by the p-calculus (a fixpoint logic)



Model Checking Problem

e Fixed a (Kripke) model M (a transition system), an initial
state sp, and a temporal property ¢

M, so }:(p?

where |= = satisfiability relation



Computation Tree Logic



Kripke Models and Branching Time

e In CTL (Computation Tree Logic) time is branching in the
future, i.e., in a Kripke Model a world has a set of possible
SuCCessors

e |f we unfold the model we obtain an infinite tree; for each
node (world /state) of the tree we specify which propositions
are true and which are false

e CTL temporal operators quantify over paths and states of the
computation tree
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(Propositional) Computation Tree Logic: (P)CTL

Atomic propositions: p,q,r,...

Classical connectives: —) @AY VY @ DY
e Two types of modalities:

e Path quantifiers P::= E, A

e Temporal modalities T::= X, F, G, U

CTL formulas have the form PTy
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CTL Modalities

A formula with no top-level modality refers to the current
state

A (for all paths) and E (there exists a path) are always
combined with X (next) and U (until)

EXyp = exists a path s.t. next ¢

EFp = exists a path s.t. eventually ¢
EGy = exists a path s.t. always ¢
E(oUvy) = exists a path s.t. ¢ until ¥
A(pU1) = for all paths ¢ until ¢
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Other Connectives

e EFp = E(true U ) potentially
e AFp = A(true U ¢) inevitable

e AGp = —EF—p invariantly

e AXp = EX-— for all paths next
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Example of formulas

Started N\ EXReady: Started holds in the current state, there
exists a successor state in which Ready holds

EF(Started A —Ready): it is possible to get to a state where
Started holds but Ready does not hold.

AG(Req D AFAck): if a Request occurs, then it will be
eventually acknowledged.

AG(AF DeviceEnabled): DeviceEnabled holds infitely often on
every computation path.

AG(EFRestart): from any state it is possible to get to the
Restart state.
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Semantics

A CTL model is a triple M = (S, R, L) (Kripke model) where
e S is a non empty set of states

e RC S — Sis a total relation (branching in the future)
R total means that for each s € S there exists at least one s
st. (s,s') €R

e L:S — 24P assigns to each state s € S the atomic formulas
that are true in s

/
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Paths

A path o is an infinite sequence of states sgsi ... s.t.
<S,',S,'+1> €ER

o[i] identifies the i-th state in the sequence o

The set of paths that start in s in M is

Pm(s) = {o | o is a path s.t. o[0] = s}

For each M there exists an infinite computation tree where
each node is a state s € S and s.t. (s/,s”) is an edge iff
(s',s") e R



Satisfiability

Fixed M = (S, R, L), the relation M, s |= ¢ (M satisfies ¢ in s) is
defined as

e sE=pif pel(s)

Prm(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = (S, R, L), the relation M, s |= ¢ (M satisfies ¢ in s) is
defined as

e skEpifpel(s)
e sk-oifsio

Prm(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = (S, R, L), the relation M, s |= ¢ (M satisfies ¢ in s) is
defined as

e skEpifpel(s)

e sE¢ifsto

esEoVYifsEgdorskE=1

Prm(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = (S, R, L), the relation M, s |= ¢ (M satisfies ¢ in s) is
defined as

e skEpifpel(s)

e skEgifsio

esEoVYifsEgdorskE=1

e s = EX¢ if do € Py(s) t.c. s[1] = ¢

Pum(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = (S, R, L), the relation M, s |= ¢ (M satisfies ¢ in s) is
defined as

e skEpifpel(s)

e sE¢ifsto

esEoVYifsEgdorskE=1

e s = EX¢ if do € Py(s) t.c. s[1] = ¢

e sEE(p Uv)if Jo € Py(s) s.t.

3 =0. 0[] EYA(VO< k<. olk] = ¢)

Prm(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = (S, R, L), the relation M, s |= ¢ (M satisfies ¢ in s) is
defined as
e skEpifpel(s)
e sE¢ifsto
sEoVYifsEporskEy
s = EX¢ if 3o € Py(s) tc. s[1] =¢
s EE(p U ) if do € Py(s) s.t.
3> 0. 0[]l EvY A (VO < k <. olk] = ¢)
sEA(¢ U ) if Vo € Py(s)
3j > 0. olj] Ew A (YO < k < j. olk] = ¢)
Prm(s) is the set of infinite paths from s in M
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e s|=EFy if 30 € Py(s)(3j > 0.0[j] = ¢)
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Other formulas

e s = EFypif 30 € Py(s)(3j > 0.0[j] = )
e s = EGy if 30 € Py(s)(Vj > 0.0[j] = ¢)
e s |=AFy if Vo € Py(s)(3j > 0.0[j] = )



Other formulas

e sEEFpifdJo € Py
e sEEGyifdoe Py
e sEAFpifVo e Py
e sEAGy if Vo € Py

—~

s)(F = 0.0[] = ¢)
)(Vj = 0.00] = ¢)
)(F = 0.00] = ¢)
s)(Vj =2 0.0]] = ¢)

S

S

—_ T~ o~
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CTL Model Checking

e The CTL model checking algorithm computes all states of the
model that satisfy the property

e The problem can be reduced to that of solving fixpoint
equations over monotone functions
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Denotation of CTL formulas

Fixed M = (S, R, L) and a CTL formula ¢,

e We define
[e] ={s | M,s = ¢}

e Furthermore,
p Ty iff [¢] C[¥]

e The set of CTL formulas equipped with T form a complete
lattice
e Least upper bound =V, indeed [ V ¢] =[] U [¢]
o Greatest lower bound = A, indeed, o A ¢] = [¢] N [¥]
e Bottom [false] = ()
o Top [true] = S
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Denotations as Fixpoints

E(o U v) =4V (¢ A (EX(E[p U 9])))

F(Z) = [¥1V (Tel N Pres(2))

Pres(Z)={s€ S| (s,s') € R,s' € Z} (predecessors of Z)
Solve the equation Z = F(Z) where F is monotone

[E(¢ U 9)] is the least fixpoint of F (i.e. the smallest set of
states A such that A = F(A)
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Other formulas: Reachability

EF(¢y) = ¢ vV EX(EFY)
F1(Z2) = [¥] U Pres(2)
Solve the equation Z = F1(Z) where F; is monotone

[EF] is the least fixpoint of F; (i.e. the smallest set of
states A such that A = F;(A)
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Other formulas

o [EGy] is the greatest fixpoint of F2(Z) = [¢] N Prea(2)
o [AGy] is the greatest fixpoint of F3(Z) = [¢] N Prey(Z)

o Prey(Z) ={s €S |Vs's.t.R(s,s'),s' € Z}
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How to compute fixpoints

Functions F, F1, F», ... are monotone w.r.t. inclusion of
denotations

We can exploit results from Fixpoint Theory

The least fixpoint of (monotone) F on a finite lattice is the
least upper bound (lub) (i.e. the union) of the sequence

0 C F(0) C F(F(@)) ...

The greatest fixpoint is the greatest lower bound (glb)
(intersection) of the sequence

S D F(S)2 F(F(S)) ...

where S is the set of all states of the model
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CTL Model Checking

e Fixed a model M, a state s, and a formula ¢, decide if
M,s =

e Emerson-Clarke defined the following algorithm: every state s
in M is labeled with the set of subformulas of ¢ that are true
ins

e The labeling is built inductively starting from the subformulas
of minimal size (atomic formulas)



CTL Model Checking

e Fixed M = (S,R, L), let AP be the set of atomic formulas

e The algorithm is based on the function Sat that computes the
set of states that satisfies a formula ¢

function Sat(y : CTL formula) : set of states
begin

if ¢ = true then return S

if p = false then return ()

if ¢ € AP then return { s | ¢ € L(s)}

if ¢ = =) then return S\ Sat(z))

if p = @1 V g then return Sat(p1) U Sat(p2)

if ¢ = EX¢1 then return Pres(Sat(¢1))

if o = E(p1 U p2) then return Satgy(p1, p2)

if o = A(p1 U ¢2) then return Satay(ei, v2)
end




Procedure for EU

function Satgy(¢1,p2 : CTL formula) :

var Q, Q' : set of states
begin
Q := Sat(y2)
Q=1
while Q # Q' do
Q:=Q;
Q:=Q U (Sat(¢1) N Pres(Q));
endw;
return Q;
end

set of states




Procedure for AU

function Satay(e1, @2 : CTL formula)
var Q, Q' : set of states
begin
Q := Sat(p2)
Q=1
while Q # Q' do
Q=
Q:=Q U (Sat(¢1) NPrey(Q));
endw;
return Q;
end

. set of states




Complexity

e Model checking a CTL formula ¢ against a model M has time
complexity O(|M| x |¢|)

e Termination
In principle it is not a problem for finite-state systems
In practice: state-explosion problem



Symbolic Model Checking

e Symbolic Representation
State = assignment to Boolean variables
Transition relation= Boolean formula
Predecessor relation Preg = Existentially quantified formula

Pres(F(x)) = 3y.T(x,y) A F([y/x])

where T(x,y) is the transition relation

e Symbolic Model Checking Algorithm
Fixpoint computation using Boolean formulas as symbolic
representation of finite sets of states

e CTL model checkers like SMV, nuSMV, Mucke are based on
OBDDs



