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Temporal Logic: A Class of Modal Logics

• Modal Logic: alternative notions of truth like is it
possible/necessary that ϕ is true?

• In modal logic interpretations are defined as Kripke structures,
i.e., a set of worlds W and an accessibility relation R in
W ×W

• Propositions are interpreted in each world

• Modalities quantify over the set of words accessible from the
current one via R

• A specific modal logic is characterized by the properties of R
(reflexivity, transitivity, etc)



Temporal Logic

• Temporal logic is a special type of modal logic in which the
truth of a formula depends on the time in which it is evaluated

• Typical temporal operators are
• Eventually Φ: in some future instant Φ is true
• Always Φ: in all future instants Φ is true
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Several Types of Temporal Logics

• Linear Temporal Logic (LTL) is linear in the future; properties
are defined on a path

• Computational Tree Logic (CTL) is branching in the future;
properties are defined on a tree

• LTL and CTL are incomparable logics: There exist formulas in
one logic that are not expressible in the other

• LTL and CTL are submsumed by CTL∗, which in turn, is
subsumed by the µ-calculus (a fixpoint logic)



Model Checking Problem

• Fixed a (Kripke) model M (a transition system), an initial
state s0, and a temporal property ϕ

M, s0 |= ϕ?

where |= = satisfiability relation



Computation Tree Logic



Kripke Models and Branching Time

• In CTL (Computation Tree Logic) time is branching in the
future, i.e., in a Kripke Model a world has a set of possible
successors

• If we unfold the model we obtain an infinite tree; for each
node (world/state) of the tree we specify which propositions
are true and which are false

• CTL temporal operators quantify over paths and states of the
computation tree
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(Propositional) Computation Tree Logic: (P)CTL

• Atomic propositions: p, q, r , . . .

• Classical connectives: ¬ψ ϕ ∧ ψ ϕ ∨ ψ ϕ ⊃ ψ

• Two types of modalities:
• Path quantifiers P::= E, A
• Temporal modalities T::= X, F, G, U

• CTL formulas have the form PTϕ
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CTL Modalities

• A formula with no top-level modality refers to the current
state

• A (for all paths) and E (there exists a path) are always
combined with X (next) and U (until)

• EXϕ = exists a path s.t. next ϕ

• EFϕ = exists a path s.t. eventually ϕ

• EGϕ = exists a path s.t. always ϕ

• E(ϕUψ) = exists a path s.t. ϕ until ψ

• A(ϕUψ) = for all paths ϕ until ψ
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Other Connectives

• EFϕ ≡ E(true U ϕ) potentially

• AFϕ = A(true U ϕ) inevitable

• AGϕ ≡ ¬EF¬ϕ invariantly

• AXϕ = EX¬ϕ for all paths next
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Example of formulas

• Started ∧ EXReady : Started holds in the current state, there
exists a successor state in which Ready holds

• EF(Started ∧ ¬Ready): it is possible to get to a state where
Started holds but Ready does not hold.

• AG(Req ⊃ AFAck): if a Request occurs, then it will be
eventually acknowledged.

• AG(AFDeviceEnabled): DeviceEnabled holds infitely often on
every computation path.

• AG(EFRestart): from any state it is possible to get to the
Restart state.
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Semantics

A CTL model is a triple M = 〈S ,R , L〉 (Kripke model) where

• S is a non empty set of states

• R ⊆ S → S is a total relation (branching in the future)
R total means that for each s ∈ S there exists at least one s ′

s.t. 〈s, s ′〉 ∈ R

• L : S → 2AP assigns to each state s ∈ S the atomic formulas
that are true in s
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Paths

• A path σ is an infinite sequence of states s0s1 . . . s.t.
〈si , si+1〉 ∈ R

• σ[i ] identifies the i-th state in the sequence σ

• The set of paths that start in s in M is

PM(s) = {σ | σ is a path s.t. σ[0] = s}

• For each M there exists an infinite computation tree where
each node is a state s ∈ S and s.t. 〈s ′, s ′′〉 is an edge iff
〈s ′, s ′′〉 ∈ R



Satisfiability

Fixed M = 〈S ,R , L〉, the relation M, s |= ϕ (M satisfies ϕ in s) is
defined as

• s |= p if p ∈ L(s)

PM(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = 〈S ,R , L〉, the relation M, s |= ϕ (M satisfies ϕ in s) is
defined as

• s |= p if p ∈ L(s)

• s |= ¬φ if s 6|= φ

PM(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = 〈S ,R , L〉, the relation M, s |= ϕ (M satisfies ϕ in s) is
defined as

• s |= p if p ∈ L(s)

• s |= ¬φ if s 6|= φ

• s |= φ ∨ ψ if s |= φ or s |= ψ

PM(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = 〈S ,R , L〉, the relation M, s |= ϕ (M satisfies ϕ in s) is
defined as

• s |= p if p ∈ L(s)

• s |= ¬φ if s 6|= φ

• s |= φ ∨ ψ if s |= φ or s |= ψ

• s |= EXφ if ∃σ ∈ PM(s) t.c. s[1] |= φ

PM(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = 〈S ,R , L〉, the relation M, s |= ϕ (M satisfies ϕ in s) is
defined as

• s |= p if p ∈ L(s)

• s |= ¬φ if s 6|= φ

• s |= φ ∨ ψ if s |= φ or s |= ψ

• s |= EXφ if ∃σ ∈ PM(s) t.c. s[1] |= φ

• s |= E(φ U ψ) if ∃σ ∈ PM(s) s.t.
∃j ≥ 0. σ[j ] |= ψ ∧ (∀0 ≤ k < j . σ[k] |= φ)

PM(s) is the set of infinite paths from s in M



Satisfiability

Fixed M = 〈S ,R , L〉, the relation M, s |= ϕ (M satisfies ϕ in s) is
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Other formulas

• s |= EFϕ if ∃σ ∈ PM(s)(∃j ≥ 0.σ[j ] |= ϕ)

• s |= EGϕ if ∃σ ∈ PM(s)(∀j ≥ 0.σ[j ] |= ϕ)

• s |= AFϕ if ∀σ ∈ PM(s)(∃j ≥ 0.σ[j ] |= ϕ)

• s |= AGϕ if ∀σ ∈ PM(s)(∀j ≥ 0.σ[j ] |= ϕ)
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CTL Model Checking

• The CTL model checking algorithm computes all states of the
model that satisfy the property

• The problem can be reduced to that of solving fixpoint
equations over monotone functions
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Denotation of CTL formulas

Fixed M = 〈S ,R , L〉 and a CTL formula ϕ,

• We define
[[ϕ]] = {s | M, s |= ϕ}

• Furthermore,
ϕ ⊑ ψ iff [[ϕ]] ⊆ [[ψ]]

• The set of CTL formulas equipped with ⊑ form a complete
lattice

• Least upper bound = ∨, indeed [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]
• Greatest lower bound = ∧, indeed, [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
• Bottom [[false]] = ∅
• Top [[true]] = S
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Denotations as Fixpoints

• E(ϕ U ψ) ≡ ψ ∨ (ϕ ∧ (EX(E[ϕ U ψ])))

• F (Z ) = [[ψ]] ∪ ([[ϕ]] ∩ Pre∃(Z ))

• Pre∃(Z ) = {s ∈ S | 〈s, s ′〉 ∈ R , s ′ ∈ Z} (predecessors of Z )

• Solve the equation Z = F (Z ) where F is monotone

• [[E(ϕ U ψ)]] is the least fixpoint of F (i.e. the smallest set of
states A such that A = F (A)
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Other formulas: Reachability

• EF(ψ) ≡ ψ ∨ EX(EFψ)

• F1(Z ) = [[ψ]] ∪ Pre∃(Z )

• Solve the equation Z = F1(Z ) where F1 is monotone

• [[EFψ]] is the least fixpoint of F1 (i.e. the smallest set of
states A such that A = F1(A)
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Other formulas

• [[EGϕ]] is the greatest fixpoint of F2(Z ) = [[ϕ]] ∩ Pre∃(Z )

• [[AGϕ]] is the greatest fixpoint of F3(Z ) = [[ϕ]] ∩ Pre∀(Z )

• Pre∀(Z ) = {s ∈ S | ∀s ′s.t.R(s, s ′), s ′ ∈ Z}
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How to compute fixpoints

• Functions F ,F1,F2, . . . are monotone w.r.t. inclusion of
denotations

• We can exploit results from Fixpoint Theory

• The least fixpoint of (monotone) F on a finite lattice is the
least upper bound (lub) (i.e. the union) of the sequence

∅ ⊆ F (∅) ⊆ F (F (∅)) . . .

• The greatest fixpoint is the greatest lower bound (glb)
(intersection) of the sequence

S ⊇ F (S) ⊇ F (F (S)) . . .

where S is the set of all states of the model



CTL Model Checking

• Fixed a model M, a state s, and a formula ϕ, decide if
M, s |= ϕ



CTL Model Checking

• Fixed a model M, a state s, and a formula ϕ, decide if
M, s |= ϕ

• Emerson-Clarke defined the following algorithm: every state s
in M is labeled with the set of subformulas of ϕ that are true
in s



CTL Model Checking

• Fixed a model M, a state s, and a formula ϕ, decide if
M, s |= ϕ

• Emerson-Clarke defined the following algorithm: every state s
in M is labeled with the set of subformulas of ϕ that are true
in s

• The labeling is built inductively starting from the subformulas
of minimal size (atomic formulas)



CTL Model Checking

• Fixed M = 〈S ,R , L〉, let AP be the set of atomic formulas

• The algorithm is based on the function Sat that computes the
set of states that satisfies a formula ϕ

function Sat(ϕ : CTL formula) : set of states

begin

if ϕ = true then return S

if ϕ = false then return ∅
if ϕ ∈ AP then return { s | ϕ ∈ L(s)}
if ϕ = ¬ψ then return S \ Sat(ψ)
if ϕ = ϕ1 ∨ ϕ2 then return Sat(ϕ1) ∪ Sat(ϕ2)
if ϕ = EXϕ1 then return Pre∃(Sat(ϕ1))
if ϕ = E(ϕ1 U ϕ2) then return SatEU(ϕ1, ϕ2)
if ϕ = A(ϕ1 U ϕ2) then return SatAU(ϕ1, ϕ2)

end



Procedure for EU

function SatEU(ϕ1, ϕ2 : CTL formula) : set of states

var Q, Q′ : set of states

begin

Q := Sat(ϕ2)
Q′ := ∅
while Q 6= Q′ do

Q′ := Q;
Q := Q ∪ (Sat(ϕ1) ∩ Pre∃(Q));

endw;
return Q;
end



Procedure for AU

function SatAU(ϕ1, ϕ2 : CTL formula) : set of states

var Q, Q′ : set of states

begin

Q := Sat(ϕ2)
Q′ := ∅
while Q 6= Q′ do

Q′ := Q;
Q := Q ∪ (Sat(ϕ1) ∩ Pre∀(Q));

endw;
return Q;
end



Complexity

• Model checking a CTL formula ϕ against a model M has time
complexity O(|M| × |ϕ|)

• Termination

In principle it is not a problem for finite-state systems
In practice: state-explosion problem



Symbolic Model Checking

• Symbolic Representation

State = assignment to Boolean variables
Transition relation= Boolean formula
Predecessor relation Pre∃ = Existentially quantified formula

Pre∃(F (x)) = ∃y .T (x , y) ∧ F ([y/x ])

where T (x , y) is the transition relation

• Symbolic Model Checking Algorithm

Fixpoint computation using Boolean formulas as symbolic
representation of finite sets of states

• CTL model checkers like SMV, nuSMV, Mucke are based on
OBDDs


