Verification and Abstraction (VA 2015)

Giorgio Delzanno

DIBRIS, Università di Genova

What is Computer Aided Verification?

 Automated verification method aimed at finding bugs in hardware design and software

What is Computer Aided Verification?

- Automated verification method aimed at finding bugs in hardware design and software
- The basic idea is to exhaustively search for bugs

What is Computer Aided Verification?

- Automated verification method aimed at finding bugs in hardware design and software
- The basic idea is to exhaustively search for bugs
- Particularly useful for verification of concurrent and reactive systems

What to verify?

 We have to specify the behavior of the system we are considering

What to verify?

- We have to specify the behavior of the system we are considering
- and the corresponding safety requirements (e.g. nothing bad happens when the program runs)

Let us consider a multitasking computation where several processes operate on shared data

 A race condition occurs when the result of the computation depends on the order of execution

Let us consider a multitasking computation where several processes operate on shared data

- A race condition occurs when the result of the computation depends on the order of execution
- They occur frequently in multitasking application (e.g. OS Kernel, multithreaded programs)

Let us consider a multitasking computation where several processes operate on shared data

- A race condition occurs when the result of the computation depends on the order of execution
- They occur frequently in multitasking application (e.g. OS Kernel, multithreaded programs)
- They are dangerous: we must ensure consistency of shared data

Let us consider a multitasking computation where several processes operate on shared data

- A race condition occurs when the result of the computation depends on the order of execution
- They occur frequently in multitasking application (e.g. OS Kernel, multithreaded programs)
- They are dangerous: we must ensure consistency of shared data
- They are difficult to find and to reproduce:
 a different execution → a possible different instruction order
 → a possible different output

Back to ... What to verify?

 Absence of race conditions in all possible executions of a concurrent system

Back to ... What to verify?

- Absence of race conditions in all possible executions of a concurrent system
- It is a classical problem!

Back to ... What to verify?

- Absence of race conditions in all possible executions of a concurrent system
- It is a classical problem!
 (Critical section problem, semaphores, etc).

Example: Critical Section Problem

• N processes compete to use shared resources

Example: Critical Section Problem

- *N* processes compete to use shared resources
- Each process has a critical section in its code in which the shared resource is used

Example: Critical Section Problem

- N processes compete to use shared resources
- Each process has a critical section in its code in which the shared resource is used
- Property to verify = mutual exclusion, i.e., in each execution at most one process is in the critical section

1. Mutual Exclusion: at most two processes in critical section

- 1. Mutual Exclusion: at most two processes in critical section
- 2. Progress: no deadlock

- 1. Mutual Exclusion: at most two processes in critical section
- 2. Progress: no deadlock
- 3. Bounded Waiting: no starvation

- 1. Mutual Exclusion: at most two processes in critical section
- 2. Progress: no deadlock
- 3. Bounded Waiting: no starvation
- 4. Typical assumption Fairness: enabled instructions are eventually executed

Example: Lamport's Bakery Algorithm

```
begin integer j;
  L1: choosing[i] := 1;
       number[i] := 1 + maximum (number[1], ..., number[N]);
      choosing[i] := 0;
      for j = 1 step 1 until N do
         begin
           L2: if choosing[j] \neq 0 then goto L2;
           L3: if number[j] \neq 0 and (number[j], j) < (number[i],
                  i) then goto L3;
         end:
      critical section;
      number[i] := 0;
      noncritical section;
      goto L1;
end
```

Automated Verification

 Automated verification methods like model checking can be applied to verify finite-state models of concurrent systems

Automated Verification

- Automated verification methods like model checking can be applied to verify finite-state models of concurrent systems
- To obtain a finite-state model: fix the number of processes, bound the domain of variable, use abstractions

• Input:

- Input:
 - system requirements given in form of a finite-state model M

- Input:
 - system requirements given in form of a finite-state model M
 - a property φ (called specification) that the final system is expected to satisfy.

- Input:
 - system requirements given in form of a finite-state model M
 - a property φ (called specification) that the final system is expected to satisfy.
- Output: yes if M satisfies φ , otherwise a counterexample

- Input:
 - system requirements given in form of a finite-state model M
 - a property φ (called specification) that the final system is expected to satisfy.
- Output: yes if M satisfies φ , otherwise a counterexample
- The counterexample details why the model doesn't satisfy the specification.

The model represents all possible (abstract) behaviors of our design

- The model represents all possible (abstract) behaviors of our design
- It can be given as a transition system:

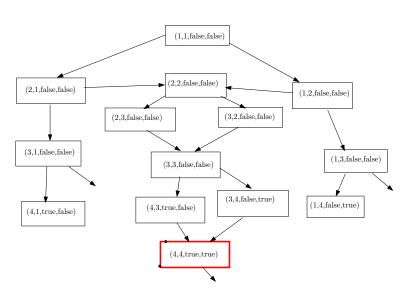
- The model represents all possible (abstract) behaviors of our design
- It can be given as a transition system:
 - A finite collection of states S

- The model represents all possible (abstract) behaviors of our design
- It can be given as a transition system:
 - A finite collection of states S
 - A transition relation $T \subseteq S \times S$ s.t. T(s, s') represents a transition from state s to state s'

Example

```
\begin{array}{lll} \mbox{Bool $wantP$, $wantQ$=} \mbox{false}; \\ \mbox{Proc P$=$} & \mbox{Proc Q$=$} \\ \mbox{1: Loop } \{ & \mbox{1: Loop } \{ \\ \mbox{2: $wait(!wantQ)$;} & \mbox{2: $wait(!wantP)$;} \\ \mbox{3: $wantP$ := true$;} & \mbox{3: $wantQ$ := true$;} \\ \mbox{4: Critical section$;} & \mbox{4: Critical section$;} \\ \mbox{5: $wantP$ := false$;} & \mbox{5: $wantQ$ := false$;} \\ \mbox{States} & = \{\langle 1, 1, false, false \rangle, \langle 2, 1, false, false \rangle, \ldots \} \\ \end{array}
```

Transition Relation



Property

• Specifications can be given in different formats:

Property

- Specifications can be given in different formats:
 - assertions,

Property

- Specifications can be given in different formats:
 - assertions,
 - graphs (automata) that specify good behaviors,

Property

- Specifications can be given in different formats:
 - assertions.
 - graphs (automata) that specify good behaviors,
 - logic formulas with navigation operators (temporal operators)

Property

- Specifications can be given in different formats:
 - assertions,
 - graphs (automata) that specify good behaviors,
 - logic formulas with navigation operators (temporal operators)
 - ...
- In our example an assertion defined on a new variable critical == 1

Models with Infinite State-Space?

- Extended Finite-State Machines
 - Data: Unbounded local and global variables
 - Stack: Recursive Boolean programs
 - Channels: (Unreliable) Communication systems
 - . . .

Models with Infinite State-Space?

- Extended Finite-State Machines
 - Data: Unbounded local and global variables
 - Stack: Recursive Boolean programs
 - Channels: (Unreliable) Communication systems
 - . . .
- Parameterized Systems
 - Parameters in the transitions
 - Families of systems

Models with Infinite State-Space?

- Extended Finite-State Machines
 - Data: Unbounded local and global variables
 - Stack: Recursive Boolean programs
 - Channels: (Unreliable) Communication systems
 - . . .
- Parameterized Systems
 - Parameters in the transitions
 - Families of systems
- Computability issues: What can be verified?

Parameterized Verification

 Model: a concurrent system with an arbitrary (finite) number of components

Parameterized Verification

- Model: a concurrent system with an arbitrary (finite) number of components
- Classes of topologies: Unordered, Linearly ordered, Tree-shaped, Graph-based

Parameterized Verification

- Model: a concurrent system with an arbitrary (finite) number of components
- Classes of topologies: Unordered, Linearly ordered, Tree-shaped, Graph-based
- Goal: Verify a Property for any number of processes (any topology in a given class)

• Deductive Methods: Invariants and Theorem Proving

- Deductive Methods: Invariants and Theorem Proving
- Abstractions: Reductions to Finite-state Systems

- Deductive Methods: Invariants and Theorem Proving
- Abstractions: Reductions to Finite-state Systems
- Regular Model Checking: Automata-based Representation of Sets of Configurations

- Deductive Methods: Invariants and Theorem Proving
- Abstractions: Reductions to Finite-state Systems
- Regular Model Checking: Automata-based Representation of Sets of Configurations
- Constraint-based Model Checking: Constraints as Representation of Sets of Configurations

Example: Lamport's Bakery Algorithm for N-processes

```
begin integer j;
  L1: choosing[i] := 1:
       number[i] := 1 + maximum (number[1], ..., number[N]);
       choosing[i] := 0:
       for j = 1 step 1 until N do
         begin
           L2: if choosing |i| \neq 0 then goto L2:
           L3: if number[j] \neq 0 and (number[j], j) < (number[i], j)
                   i) then goto L3:
         end:
       critical section;
       number[i] := 0;
       noncritical section:
       goto L1;
end
```

Verify mutual exclusion for any number of processes!

Plan of the Lessons

- Verification of Finite-state Systems and Abstractions
- Verification of Infinite-state Systems and Abstractions
- Parameterized Verification and Abstractions