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What is Computer Aided Verification?

• Automated verification method aimed at finding bugs in
hardware design and software



What is Computer Aided Verification?

• Automated verification method aimed at finding bugs in
hardware design and software

• The basic idea is to exhaustively search for bugs



What is Computer Aided Verification?

• Automated verification method aimed at finding bugs in
hardware design and software

• The basic idea is to exhaustively search for bugs

• Particularly useful for verification of concurrent and reactive
systems
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What to verify?

• We have to specify the behavior of the system we are
considering

• and the corresponding safety requirements (e.g. nothing bad
happens when the program runs)
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Example: Race conditions

Let us consider a multitasking computation where several processes
operate on shared data

• A race condition occurs when the result of the computation
depends on the order of execution

• They occur frequently in multitasking application (e.g. OS
Kernel, multithreaded programs)

• They are dangerous: we must ensure consistency of shared
data

• They are difficult to find and to reproduce:
a different execution → a possible different instruction order
→ a possible different output
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Back to . . .What to verify?

• Absence of race conditions in all possible executions of a
concurrent system

• It is a classical problem!

(Critical section problem, semaphores, etc).
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Example: Critical Section Problem

• N processes compete to use shared resources

• Each process has a critical section in its code in which the
shared resource is used

• Property to verify = mutual exclusion, i.e., in each execution
at most one process is in the critical section
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A Good Solution

1. Mutual Exclusion: at most two processes in critical section

2. Progress: no deadlock

3. Bounded Waiting: no starvation

4. Typical assumption Fairness: enabled instructions are
eventually executed



Example: Lamport’s Bakery Algorithm
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Automated Verification

• Automated verification methods like model checking can be
applied to verify finite-state models of concurrent systems

• To obtain a finite-state model: fix the number of processes,
bound the domain of variable, use abstractions
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How does a model checker work?

• Input:
• system requirements given in form of a finite-state model M
• a property ϕ (called specification) that the final system is

expected to satisfy.

• Output: yes if M satisfies ϕ, otherwise a counterexample

• The counterexample details why the model doesn’t satisfy the
specification.
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Finite-state Model

• The model represents all possible (abstract) behaviors of our
design

• It can be given as a transition system:
• A finite collection of states S
• A transition relation T ⊆ S × S s.t. T (s, s ′) represents a

transition from state s to state s ′



Example

Bool wantP,wantQ=false;

Proc P=
1: Loop {
2: wait(!wantQ);
3: wantP := true;
4: Critical section;
5: wantP := false;
}

Proc Q=
1: Loop {
2: wait(!wantP);
3: wantQ := true;
4: Critical section;
5: wantQ := false;
}

States = {〈1, 1, false, false〉, 〈2, 1, false, false〉, . . .}



Transition Relation

(1,1,false,false)

(2,1,false,false) (1,2,false,false)

(3,1,false,false)

(2,2,false,false)

(1,3,false,false)

(3,2,false,false)(2,3,false,false)

(4,1,true,false)
(1,4,false,true)

(3,3,false,false)

(4,3,true,false)

(4,4,true,true)

(3,4,false,true)
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Property

• Specifications can be given in different formats:
• assertions,
• graphs (automata) that specify good behaviors,
• logic formulas with navigation operators (temporal operators)
• . . .

• In our example an assertion defined on a new variable
critical == 1
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Models with Infinite State-Space?

• Extended Finite-State Machines
• Data: Unbounded local and global variables
• Stack: Recursive Boolean programs
• Channels: (Unreliable) Communication systems
• . . .

• Parameterized Systems
• Parameters in the transitions
• Families of systems

• Computability issues: What can be verified?
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Parameterized Verification

• Model: a concurrent system with an arbitrary (finite) number
of components

• Classes of topologies: Unordered, Linearly ordered,
Tree-shaped, Graph-based

• Goal: Verify a Property for any number of processes (any
topology in a given class)
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Parameterized Verification Methods

• Deductive Methods: Invariants and Theorem Proving

• Abstractions: Reductions to Finite-state Systems

• Regular Model Checking: Automata-based Representation of
Sets of Configurations

• Constraint-based Model Checking: Constraints as
Representation of Sets of Configurations



Example: Lamport’s Bakery Algorithm for N-processes

Verify mutual exclusion for any number of processes!



Plan of the Lessons

• Verification of Finite-state Systems and Abstractions

• Verification of Infinite-state Systems and Abstractions

• Parameterized Verification and Abstractions


