Declarative Programming and (Co)Induction
 Module 2
 Prolog lab 2

Davide Ancona and Elena Zucca
University of Genova

PhD Course, DIBRIS, June 26-27, 2014

Easy exercises

1. Try out non ground queries, with the predicates defined in exercise 3 of Prolog lab 1. Consider both inductive and coinductive predicates.
2. Define the predicate $a d d / 3$ s.t. $a d d\left(t_{1}, t_{2}, t_{3}\right)$ holds iff t_{1}, t_{2}, and t_{3} are natural numbers and $t_{3}=t_{1}+t_{2}$. Try out the goal ?- $\operatorname{add}(N, M, s(s(z)))$ with both the inductive and coinductive interpretations.
3. Implement the typechecking rules of the simply typed lambda-calculus as defined on slide 30, Module 1, "Small Step Semantics, Lambda Calculus and Type Systems".

Hints: Define the predicate typeof/ 2 for ground terms (that is, where the type environment is implicitly empty), based on the auxiliary predicate typeof/3 that takes also a type environment.
To implement the type environment you may use the library assoc (with :- use_module(library(assoc)).) and then the three predicates empty_assoc/l (to return an empty environment), get_assoc/3 (to check the type of a variable), and put_assoc/4 to update an environment (see the on-line documentation at http://www.swi-prolog.org/).
For representing the terms of the language, see the suggested syntax in the queries below.
?- $E=\operatorname{fun}(x:$ bool $->x)$, typeof $(E, R T)$.
?- $E=\operatorname{fun}(x: T->x)$, typeof $(E, R T)$.
?- $E=\operatorname{fun}(f 1: T 1->\operatorname{fun}(f 2: T 2->f u n(x: T->\operatorname{app}(f 1, \operatorname{app}(f 2, x)))))$, typeof $(E, R T)$.
?- $E=\operatorname{fun}(x: T->\operatorname{app}(x, x))$, typeof $(E, R T)$.
?- $E=f u n(x: T->\operatorname{app}(x, x))$, typeof $(\operatorname{app}(E, E), R T)$.
?- $E=\operatorname{fun}(x: T->\operatorname{app}(x, x))$, typeof $(\operatorname{app}(\operatorname{app}(\operatorname{app}(E, E)$, true $)$, false $), R T)$.
?- $E=\operatorname{fun}(x: X->\operatorname{fun}(y: Y->i f(x, y, x))), \operatorname{typeof}(E, R T)$.
?- $E 1=\operatorname{fun}(x: X->\operatorname{app}(f, \operatorname{app}(x, x))), E=f u n(f: F->\operatorname{app}(E 1, E 1))$,typeof $(E, R T)$.
?- $F=\operatorname{fun}(x: T->x), E=\operatorname{fun}(f: F T->\operatorname{if}(\operatorname{true}, \operatorname{app}(f, \operatorname{true}), \operatorname{app}(f, f a l s e))), \operatorname{typeof}(E, R T)$.
?- $F=\operatorname{fun}(x: T->x), E=f u n(f: F T->i f($ true $, \operatorname{app}(f, \operatorname{true}), \operatorname{app}(f, F)))$, typeof $(E, R T)$.
Try out the queries with both inductive and coinductive interpretation, and motivate the computed answers.
4. Define the coinductive predicate $a d d / 3$ which computes addition between repeating decimals.

Hints: use built-in numbers to represent digits, and built-in predicates to compute addition, and integer division with remainder (example X is $3+5, Y$ is $5 / / 10, Z$ is $5 \bmod 10$).

