
Declarative Programming and (Co)Induction
Module 2

Prolog lab 2

Davide Ancona and Elena Zucca
University of Genova

PhD Course, DIBRIS, June 26-27, 2014

Easy exercises

1. Try out non ground queries, with the predicates defined in exercise 3 of Prolog lab 1. Consider both inductive and
coinductive predicates.

2. Define the predicate add/3 s.t. add(t1, t2, t3) holds iff t1, t2, and t3 are natural numbers and t3 = t1 + t2.

Try out the goal ?- add(N,M, s(s(z))) with both the inductive and coinductive interpretations.

3. Implement the typechecking rules of the simply typed lambda-calculus as defined on slide 30, Module 1, “Small
Step Semantics, Lambda Calculus and Type Systems”.

Hints: Define the predicate typeof/2 for ground terms (that is, where the type environment is implicitly empty),
based on the auxiliary predicate typeof/3 that takes also a type environment.

To implement the type environment you may use the library assoc (with :- use_module(library(assoc)).) and then the
three predicates empty_assoc/1 (to return an empty environment), get_assoc/3 (to check the type of a variable), and
put_assoc/4 to update an environment (see the on-line documentation at http://www.swi-prolog.org/).

For representing the terms of the language, see the suggested syntax in the queries below.

?- E = fun(x : bool− > x), typeof(E,RT ).
?- E = fun(x : T− > x), typeof(E,RT ).
?- E = fun(f1 : T1− > fun(f2 : T2− > fun(x : T− > app(f1, app(f2, x))))), typeof(E,RT ).
?- E = fun(x : T− > app(x, x)), typeof(E,RT ).
?- E = fun(x : T− > app(x, x)), typeof(app(E,E), RT ).
?- E = fun(x : T− > app(x, x)), typeof(app(app(app(E,E), true), false), RT ).
?- E = fun(x : X− > fun(y : Y− > if(x, y, x))), typeof(E,RT ).
?- E1 = fun(x : X− > app(f, app(x, x))), E = fun(f : F− > app(E1, E1)), typeof(E,RT ).
?- F = fun(x : T− > x), E = fun(f : FT− > if(true, app(f, true), app(f, false))), typeof(E,RT ).
?- F = fun(x : T− > x), E = fun(f : FT− > if(true, app(f, true), app(f, F ))), typeof(E,RT ).

Try out the queries with both inductive and coinductive interpretation, and motivate the computed answers.

4. Define the coinductive predicate add/3 which computes addition between repeating decimals.

Hints: use built-in numbers to represent digits, and built-in predicates to compute addition, and integer division
with remainder (example X is 3 + 5, Y is 5//10, Z is 5 mod 10).

http://www.swi-prolog.org/

