Part 3 SLD and coSLD resolution

Ancona, Zucca (Univ. di Genova)

Declarative Programming and (Co)Induction

DIBRIS, June 26-27, 2014 1 / 13

ъ

< - □ > < = >

Terminology

In part 2 we have seen that logic programs are specific inference systems We used interchangeably terminology of inference systems and Prolog

From now on we adopt the Prolog terminology

- logic program = an inference system
- Horn clause = a meta-rule
- ground instantiation of a Horn clause = a rule
- head of a clause = conclusion of a meta-rule
- **body of a clause** = premises of a meta-rule
- fact = an axiom

Defining functions in Prolog

Functions as predicates

So far we have seen examples of predicates (functions returning false or true)

Problem: how can we define addition on natural numbers?

Solution: we introduce the predicate add/3 where the last argument is the result of the operation

Examples:

add(s(z), s(s(z)), s(s(s(z)))) holds

add(s(z), s(s(z)), z) does not hold

More on functions in Prolog

Clauses defining add/3

(C1) add(z, N, N).

(C2) add(s(N), M, s(K)) := add(N, M, K).

Abstract and operational semantics

- The abstract syntax is concise and simple
- But useless for computing
- If we could only check whether ground atoms holds then we would not be able to compute functions
- More expressive queries are needed, and a corresponding operational semantics must be defined
- The operational semantics must be consistent with the abstract one

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Queries (or goals)

Examples

The system must be able to solve queries (or goals)

```
?- add(s(z), s(s(z)), N).
```

Meaning: find all substitutions $\{N \mapsto t\}$ s.t. add(s(z), s(s(z)), t) holds (w.r.t. the abstract semantics)

Computed answer: $\{N \mapsto s(s(s(z)))\}$

Queries may involve more atoms

2 - geq(s(s(z)), N), add(s(z), M, N).

And there can be several computed answers

 $\{M \mapsto z, N \mapsto s(z)\}, \{M \mapsto s(z), N \mapsto s(s(z))\}$

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Most general substitution

Example

For capturing all answers the most general substitution must be computed

?- add(z, N, M).

Computed answer: $\{N \mapsto M\}$

Meaning: all ground instantiations of add(z, M, M) holds (w.r.t. the abstract semantics)

(4月) トイヨト イヨト

More on the operational semantics

Based on the SLD resolution

- resolution: inference rule based on refutation
- refutation: theorem proving technique (based on proof by contradiction)
- SLD means: Selective Linear Definite clause
- meaning of Selective and Linear explained later on

Why linear?

Example Proof trees are linearized A proof tree R3 eq(s(z),s(z)) R2 R2 geq(s(z),s(z)) geq(s(z),s(z)) **R1 R1** geq(z,z) geq(z,z)

æ

・ロト ・回ト ・ヨト ・ヨト

Why linear?

Example

Proof trees are linearized

The same proof tree, but linearized. Reasons: sequential process, easier implementation

Ancona, Zucca (Univ. di Genova)

Why selective?

Example

At each step one atom is selected according to a selection rule Previous example obtained with left-most selection rule (as in Prolog)

Why selective?

Example

At each step one atom is selected according to a selection rule Linearization obtained with right-most selection rule

Ancona, Zucca (Univ. di Genova)

Example 1

?- add(N, M, s(z)). $\sigma_0 = \{\}$

æ

・ロト ・回ト ・ヨト ・ヨト

Example 1

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C1) $\sigma_1 = mgu(add(N, M, s(z)), add(z, N_1, N_1))$

3

イロト イヨト イヨト イヨト

Example 1

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C1) $\sigma_1 = mgu(add(N, M, s(z)), add(z, N_1, N_1))$

?- true.
$$\sigma_0 \sigma_1 = \{ N \mapsto z, M \mapsto s(z), N_1 \mapsto s(z) \}$$

- 32

・ロト ・日本 ・ヨト ・ヨト

Example 1

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C1) $\sigma_1 = mgu(add(N, M, s(z)), add(z, N_1, N_1))$

?- true.
$$\sigma_0 \sigma_1 = \{ N \mapsto z, M \mapsto s(z), N_1 \mapsto s(z) \}$$

Computed answer: { $N \mapsto z, M \mapsto s(z)$ }

- 3

イロト イヨト イヨト イヨト

Example 2

?- add(N, M, s(z)). $\sigma_0 = \{\}$

æ

・ロト ・回ト ・ヨト ・ヨト

Example 2

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C2) $\sigma_1 = mgu(add(N, M, s(z)), add(s(N_1), M_1, s(K_1)))$

- 32

イロト イヨト イヨト

Example 2

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C2) $\sigma_1 = mgu(add(N, M, s(z)), add(s(N_1), M_1, s(K_1)))$

?- $add(N_1, M_1, z)$. $\sigma_0 \sigma_1 = \{N \mapsto s(N_1), M \mapsto M_1, K_1 \mapsto z\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Example 2

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C2) $\sigma_1 = mgu(add(N, M, s(z)), add(s(N_1), M_1, s(K_1)))$

?-
$$add(N_1, M_1, z)$$
. $\sigma_0 \sigma_1 = \{N \mapsto s(N_1), M \mapsto M_1, K_1 \mapsto z\}$

Applied clause (C1) $\sigma_2 = mgu(add(N_1, M_1, z), add(z, N_2, N_2))$

Example 2

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C2) $\sigma_1 = mgu(add(N, M, s(z)), add(s(N_1), M_1, s(K_1)))$

?-
$$add(N_1, M_1, z)$$
. $\sigma_0 \sigma_1 = \{N \mapsto s(N_1), M \mapsto M_1, K_1 \mapsto z\}$

Applied clause (C1) $\sigma_2 = mgu(add(N_1, M_1, z), add(z, N_2, N_2))$

?- true. $\sigma_0 \sigma_1 \sigma_2 = \{ N \mapsto s(z), M \mapsto z, K_1 \mapsto z, N_1 \mapsto z, M_1 \mapsto z, N_2 \mapsto z \}$

Example 2

?- add(N, M, s(z)). $\sigma_0 = \{\}$

Applied clause (C2) $\sigma_1 = mgu(add(N, M, s(z)), add(s(N_1), M_1, s(K_1)))$

?-
$$add(N_1, M_1, z)$$
. $\sigma_0 \sigma_1 = \{N \mapsto s(N_1), M \mapsto M_1, K_1 \mapsto z\}$

Applied clause (C1) $\sigma_2 = mgu(add(N_1, M_1, z), add(z, N_2, N_2))$

?- true. $\sigma_0\sigma_1\sigma_2 = \{N \mapsto s(z), M \mapsto z, K_1 \mapsto z, N_1 \mapsto z, M_1 \mapsto z, N_2 \mapsto z\}$

Computed answer: { $N \mapsto s(z), M \mapsto z$ }

Definition of SLD resolution

Meta-rules

$$\frac{sld(G, \emptyset, \sigma)}{sld(G, \sigma)} \qquad \overline{sld([], \sigma, \sigma)}$$

 $\frac{\textit{clause}(\textit{A}, \sigma_1, \textit{G2}, \sigma_2) \quad \textit{sld}(\textit{G2}, \sigma_1\sigma_2, \sigma_3) \quad \textit{sld}(\textit{G1}, \sigma_3, \sigma)}{\textit{sld}([\textit{A}|\textit{G1}], \sigma_1, \sigma)}$

Explanations:

- *sld*(*G*, *σ*): *σ* is the most general substitution s.t. all ground instances of *Gσ* holds
- *sld*(*G*, σ₁, σ₂): σ₂ is the most general substitution s.t. (*G*σ₁)σ₂ holds; σ₁ corresponds to the substitution computed so far
- [A|G] is a list where A is the left-most atom, G is the rest of the list
- *clause*(A, σ_1, G, σ) holds is there exists a clause, with all fresh variables, where σ is the mgu between $A\sigma_1$ and the head, and G is the body
- $\sigma_1 \sigma_2$ is the substitution σ s.t. $A\sigma = (A\sigma_1)\sigma_2$ for all atoms A

3

Definition of coSLD resolution

Meta-rules

$$\frac{sld([], G, \emptyset, \sigma)}{sld(G, \sigma)} \qquad \overline{sld(H, [], \sigma, \sigma)}$$

 $\frac{\textit{clause}(\textit{A}, \sigma_1, \textit{G2}, \sigma_2) \quad \textit{sld}([\textit{A}|\textit{H}], \textit{G2}, \sigma_1\sigma_2, \sigma_3) \quad \textit{sld}(\textit{H}, \textit{G}, \sigma_3, \sigma)}{\textit{sld}(\textit{H}, [\textit{A}|\textit{G1}], \sigma_1, \sigma)}$

$$\frac{\textit{member}(H, A, \sigma_1, \sigma_2) \quad \textit{sld}(H, G, \sigma_1 \sigma_2, \sigma)}{\textit{sld}(H, [A|G], \sigma_1, \sigma)}$$

Explanations:

- $sld(H, G, \sigma_1, \sigma_2)$: σ_2 is the most general substitution s.t. $(G\sigma_1)\sigma_2$ holds; σ_1 corresponds to the substitution computed so far, *H* to the list of atoms resolved so far
- *member*(*H*, *A*, σ₁, σ₂): there exists an atom *A*' in the list *H* s.t. σ₂ is the mgu between *A*σ₁ and *A*'

3

・ロン ・回 と ・ 回 と