Part 3 SLD and coSLD resolution

Terminology

In part 2 we have seen that logic programs are specific inference systems We used interchangeably terminology of inference systems and Prolog

From now on we adopt the Prolog terminology

- logic program = an inference system
- Horn clause = a meta-rule
- ground instantiation of a Horn clause = a rule
- head of a clause = conclusion of a meta-rule
- body of a clause = premises of a meta-rule
- fact = an axiom

Defining functions in Prolog

Functions as predicates

So far we have seen examples of predicates (functions returning false or true)
Problem: how can we define addition on natural numbers?
Solution: we introduce the predicate add/3 where the last argument is the result of the operation

Examples:
$\operatorname{add}(s(z), s(s(z)), s(s(s(z))))$ holds
$\operatorname{add}(s(z), s(s(z)), z)$ does not hold

More on functions in Prolog

Clauses defining add $/ 3$
(C1) $\operatorname{add}(z, N, N)$.
(C2) $\operatorname{add}(s(N), M, s(K)):-\operatorname{add}(N, M, K)$.

Abstract and operational semantics

- The abstract syntax is concise and simple
- But useless for computing
- If we could only check whether ground atoms holds then we would not be able to compute functions
- More expressive queries are needed, and a corresponding operational semantics must be defined
- The operational semantics must be consistent with the abstract one

Queries (or goals)

Examples

The system must be able to solve queries (or goals)
?- $\operatorname{add}(s(z), s(s(z)), N)$.
Meaning: find all substitutions $\{N \mapsto t\}$ s.t. $\operatorname{add}(s(z), s(s(z)), t)$ holds (w.r.t. the abstract semantics)

Computed answer: $\{N \mapsto s(s(s(z)))\}$
Queries may involve more atoms
?- $\operatorname{geq}(s(s(z)), N), \operatorname{add}(s(z), M, N)$.
And there can be several computed answers
$\{M \mapsto z, N \mapsto s(z)\},\{M \mapsto s(z), N \mapsto s(s(z))\}$

Most general substitution

Example

For capturing all answers the most general substitution must be computed
?- $\operatorname{add}(z, N, M)$.
Computed answer: $\{N \mapsto M\}$
Meaning: all ground instantiations of $\operatorname{add}(z, M, M)$ holds (w.r.t. the abstract semantics)

More on the operational semantics

Based on the SLD resolution

- resolution: inference rule based on refutation
- refutation: theorem proving technique (based on proof by contradiction)
- SLD means: Selective Linear Definite clause
- meaning of Selective and Linear explained later on

Why linear?

Example

Proof trees are linearized
A proof tree

Why linear?

Example

Proof trees are linearized
The same proof tree, but linearized.
Reasons: sequential process, easier implementation

Why selective?

Example

At each step one atom is selected according to a selection rule Previous example obtained with left-most selection rule (as in Prolog)

Why selective?

Example

At each step one atom is selected according to a selection rule Linearization obtained with right-most selection rule

Non ground goals

Example 1

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$

Non ground goals

Example 1

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C1) $\sigma_{1}=\operatorname{mgu}\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(z, N_{1}, N_{1}\right)\right)$

Non ground goals

Example 1

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C1) $\sigma_{1}=\operatorname{mgu}\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(z, N_{1}, N_{1}\right)\right)$
?- true. $\quad \sigma_{0} \sigma_{1}=\left\{N \mapsto z, M \mapsto s(z), N_{1} \mapsto s(z)\right\}$

Non ground goals

Example 1

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C1) $\sigma_{1}=\operatorname{mgu}\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(z, N_{1}, N_{1}\right)\right)$
?- true. $\quad \sigma_{0} \sigma_{1}=\left\{N \mapsto z, M \mapsto s(z), N_{1} \mapsto s(z)\right\}$
Computed answer: $\{N \mapsto z, M \mapsto s(z)\}$

Non ground goals

Example 2

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$

Non ground goals

Example 2

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C2) $\sigma_{1}=\operatorname{mgu}\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(s\left(N_{1}\right), M_{1}, s\left(K_{1}\right)\right)\right)$

Non ground goals

Example 2

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C2) $\sigma_{1}=m g u\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(s\left(N_{1}\right), M_{1}, s\left(K_{1}\right)\right)\right)$
?- $\operatorname{add}\left(N_{1}, M_{1}, z\right) . \quad \sigma_{0} \sigma_{1}=\left\{N \mapsto s\left(N_{1}\right), M \mapsto M_{1}, K_{1} \mapsto z\right\}$

Non ground goals

Example 2

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C2) $\sigma_{1}=m g u\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(s\left(N_{1}\right), M_{1}, s\left(K_{1}\right)\right)\right)$
?- $\operatorname{add}\left(N_{1}, M_{1}, z\right) . \quad \sigma_{0} \sigma_{1}=\left\{N \mapsto s\left(N_{1}\right), M \mapsto M_{1}, K_{1} \mapsto z\right\}$
Applied clause (C1) $\sigma_{2}=\operatorname{mgu}\left(\operatorname{add}\left(N_{1}, M_{1}, z\right), \operatorname{add}\left(z, N_{2}, N_{2}\right)\right)$

Non ground goals

Example 2

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C2) $\sigma_{1}=m g u\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(s\left(N_{1}\right), M_{1}, s\left(K_{1}\right)\right)\right)$
?- $\operatorname{add}\left(N_{1}, M_{1}, z\right) . \quad \sigma_{0} \sigma_{1}=\left\{N \mapsto s\left(N_{1}\right), M \mapsto M_{1}, K_{1} \mapsto z\right\}$
Applied clause (C1) $\sigma_{2}=\operatorname{mgu}\left(\operatorname{add}\left(N_{1}, M_{1}, z\right), \operatorname{add}\left(z, N_{2}, N_{2}\right)\right)$
?- true. $\sigma_{0} \sigma_{1} \sigma_{2}=\left\{N \mapsto s(z), M \mapsto z, K_{1} \mapsto z, N_{1} \mapsto z, M_{1} \mapsto z, N_{2} \mapsto z\right\}$

Non ground goals

Example 2

?- $\operatorname{add}(N, M, s(z)) . \quad \sigma_{0}=\{ \}$
Applied clause (C2) $\sigma_{1}=\operatorname{mgu}\left(\operatorname{add}(N, M, s(z)), \operatorname{add}\left(s\left(N_{1}\right), M_{1}, s\left(K_{1}\right)\right)\right)$
?- $\operatorname{add}\left(N_{1}, M_{1}, z\right) . \quad \sigma_{0} \sigma_{1}=\left\{N \mapsto s\left(N_{1}\right), M \mapsto M_{1}, K_{1} \mapsto z\right\}$
Applied clause (C1) $\sigma_{2}=\operatorname{mgu}\left(\operatorname{add}\left(N_{1}, M_{1}, z\right), \operatorname{add}\left(z, N_{2}, N_{2}\right)\right)$
?- true. $\sigma_{0} \sigma_{1} \sigma_{2}=\left\{N \mapsto s(z), M \mapsto z, K_{1} \mapsto z, N_{1} \mapsto z, M_{1} \mapsto z, N_{2} \mapsto z\right\}$
Computed answer: $\{N \mapsto s(z), M \mapsto z\}$

Definition of SLD resolution

Meta-rules

$$
\begin{aligned}
& \frac{\operatorname{sld}(G, \emptyset, \sigma)}{\operatorname{sld}(G, \sigma)} \quad \frac{\operatorname{sld}([], \sigma, \sigma)}{\operatorname{clause}\left(A, \sigma_{1}, G 2, \sigma_{2}\right)} \operatorname{sld}\left(G 2, \sigma_{1} \sigma_{2}, \sigma_{3}\right) \quad \operatorname{sld}\left(G 1, \sigma_{3}, \sigma\right)
\end{aligned}
$$

Explanations:

- $\operatorname{sld}(G, \sigma): \sigma$ is the most general substitution s.t. all ground instances of G σ holds
- $\operatorname{sld}\left(G, \sigma_{1}, \sigma_{2}\right): \sigma_{2}$ is the most general substitution s.t. $\left(G \sigma_{1}\right) \sigma_{2}$ holds; σ_{1} corresponds to the substitution computed so far
- $[A \mid G]$ is a list where A is the left-most atom, G is the rest of the list
- clause $\left(A, \sigma_{1}, G, \sigma\right)$ holds is there exists a clause, with all fresh variables, where σ is the mgu between $A \sigma_{1}$ and the head, and G is the body
- $\sigma_{1} \sigma_{2}$ is the substitution σ s.t. $\boldsymbol{A} \sigma=\left(\boldsymbol{A} \sigma_{1}\right) \sigma_{2}$ for all atoms \boldsymbol{A}

Definition of coSLD resolution

Meta-rules

$$
\begin{aligned}
& \frac{\operatorname{sld}([], G, \emptyset, \sigma)}{\operatorname{sld}(G, \sigma)} \quad \frac{\operatorname{sld}(H,[], \sigma, \sigma)}{} \\
& \frac{\operatorname{clause}\left(A, \sigma_{1}, G 2, \sigma_{2}\right)}{\operatorname{sld}\left([A \mid H], G 2, \sigma_{1} \sigma_{2}, \sigma_{3}\right)} \operatorname{sld}\left(H,[A \mid G 1], \sigma_{1}, \sigma\right)
\end{aligned}
$$

$$
\frac{\operatorname{member}\left(H, A, \sigma_{1}, \sigma_{2}\right) \quad \operatorname{sld}\left(H, G, \sigma_{1} \sigma_{2}, \sigma\right)}{\operatorname{sld}\left(H,[A \mid G], \sigma_{1}, \sigma\right)}
$$

Explanations:

- $\operatorname{sld}\left(H, G, \sigma_{1}, \sigma_{2}\right): \sigma_{2}$ is the most general substitution s.t. ($\left.G \sigma_{1}\right) \sigma_{2}$ holds; σ_{1} corresponds to the substitution computed so far, H to the list of atoms resolved so far
- member $\left(H, A, \sigma_{1}, \sigma_{2}\right)$: there exists an atom A^{\prime} in the list H s.t. σ_{2} is the mgu between $A \sigma_{1}$ and A^{\prime}

