Declarative Programming and (Co)Induction
 Module 2
 Prolog lab 1

Davide Ancona and Elena Zucca
University of Genova

PhD Course, DIBRIS, June 26-27, 2014

1. Consider the following Prolog program:
```
:- use_module(library(coinduction)).
:- coinductive is_nat_co/1.
is_nat_co(z).
is_nat_co(s(N)) :- is_nat_co(N).
is_nat(z).
is_nat(s(N)) :- is_nat(N).
```

(a) Find a ground term t for which both queries ? - is_nat (t) and ?- is_nat_co (t) succeed.
(b) Find a ground term t for which both queries ?- is_nat (t) and ?- is_nat_co (t) fail.
(c) Find a ground term t for which the query ? - is_nat (t) does not terminate, whereas ?- is_nat_co (t) succeeds.
(d) Is there a ground term t for which the query ? - is_nat (t) succeeds, whereas ?- is_nat_co (t) fails?
2. (a) Extend the program in exercise 1 to define the two predicates

```
is_nat_list/1 (inductive)
is_nat_list_co/1 (coinductive)
```

that succeed if the argument is a list of natural numbers (according to is_nat_co/1 predicate).
(b) Repeat points (a) to (d) of exercise 1 for the two defined predicates.
3. Extend the program in exercise 1 to define the following predicates on natural numbers; for each kind of predicates, both the inductive and the coinductive version have to be considered;

```
pos/2 %%% predicate ''positive''
geq/2 %%% predicate ''greater than or equal''
leq/2 %%% predicate 'less than or equal''
gth/2 %%% predicate ''greater than''
lth/2 %%% predicate ''less than''
eq/2 %%% predicate ''equal to''
odd/1 %%% predicate ''is odd''
even/1 %%% predicate 'is even''
```

4. Extend the program in exercise 3 to define the following predicates on lists of natural numbers, ordered according to the standard lexicographical order; for each kind of predicates, both the inductive and the coinductive version have to be considered;
```
all_pos/1 %%O
geq/2 %% predicate ''greater than or equal''
leq/2 %% predicate 'less than or equal''
gth/2 %% predicate ''greater than''
lth/2 %% predicate ''less than''
eq/2 %%% predicate ''equal to''
```

5. Repeating decimals corresponding to rational numbers in the interval $[0,1[$ can be represented by regular lists of digits.
Define the predicate eq/ 2 that checks if two repeating decimals are equal.
Hint: recall that some numbers are not uniquely represented.
