
Part 2
Logic programs as inference systems

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 1 / 32



Terms
Concrete and abstract syntax
Let us consider the expression: 2 ∗ (3 + X )

concrete syntax: the expression is a string made of seven characters
(which must obey some well-formedness rule)
abstract syntax: emphasis on the inherent hierarchical structure.
2 ∗ (3 + X ) corresponds to a tree:

Standard textual representation:
∗(2,+(3,X )), or times(2,plus(3,X )) if we prefer names over special
characters.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 2 / 32



Functors, arities and variables

Elementary blocks
Terms are built on top of

operation names/symbols (called functors in Prolog)
logical variables (or simply variables); we use the standard Prolog
convention: variables begin with an upper case letter

Arity
Every functor is associated with a fixed and finite arity

plus/2 means plus has arity 2 (it takes two arguments)
plus/1, plus/2: two distinct functors with the same name, but different
arities
3 is a functor with arity 0, that is, a constant

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 3 / 32



Terms and trees

Well-formedness rules
Terms are trees where nodes are labeled by functors or variables

standard rules on well-formed trees (see next slides)
a node labeled by a functor of arity n must have exactly n children.
Consequence: constants can only label leaves
variables can only label leaves

Ground terms
A term is ground if it contains no variables

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 4 / 32



More on trees (1)
Standard rules

1 There exists a unique node, called root, with no parents
2 All other nodes have exactly one parent
3 The ancestor/descendant relation cannot be cyclic

The ancestor/descendant relation is the transitive closure of the parent/child
relation.
This is not a tree (rule 3 does not hold)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 5 / 32



More on trees (2)

Finite and infinite trees
We use finite /infinite trees for representing terms and proofs (see later).

Branching is always finite
Depth is allowed to be infinite

Example:

This tree represents the infinite term f (1, f (1, f (1, f (. . .

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 6 / 32



Regular trees
Definition
A tree is regular if it represents a term that has a finite number of subterms.
Equivalent terminology: rational tree (we will discover why) Examples:

All finite trees are regular
The following infinite tree is regular:

The following tree is not regular:

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 7 / 32



Representing infinite regular trees

Infinite regular trees as graphs
Graphs generalize trees (trees are particular kinds of graphs)
An infinite regular tree and its finite representation as a graph

Intuition: the graph infinitely unfolds to the regular tree

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 8 / 32



Substitutions

Definition
A substitution is a finite mapping from variables to terms.
Example: σ = [X 7→ f (1),Y 7→ X ]
Application of σ to terms:

Xσ = f (1)

g(X ,Y )σ = g(f (1),X ) (variables are substituted in parallel)
f (Z )σ = f (Z ) (variables for which no substitution is specified are implicitly
mapped to themselves)

Composition of substitutions
Composition of substitutions σ1 and σ2:
the map σ = σ1σ2 s.t. tσ = (tσ1)σ2 for all terms t

Grounding substitution
A substitution σ is grounding for a term t if tσ is a ground term

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 9 / 32



Matching and unification

Matching (functional programming)
A term t1 matches a term t2 if there exists a substitution σ s.t. t1 = t2σ.
Usually t1 is ground and t2 is not, and t2 does not contain distinct variables
(even though these conditions are not strictly necessary).
Examples:

f (1,g(2)) matches f (X ,g(Y )) with substitution [X 7→ 1,Y 7→ 2]

f (1,2) does not match f (X ,g(Y ))

Unification (logic programming)
Terms t1 and t2 unify if there exists a substitution σ s.t. t1σ = t2σ.
Examples:

f (X ,g(f (Z ))) and f (1,g(Y )) unify with substitution [X 7→ 1,Y 7→ f (Z )]

f (X ,2) and f (1,X ) do not unify

Matching is unidirectional, unification is bidirectional

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 10 / 32



More on unification
Most general unifier
The following are all valid unifiers for f (X ,g(f (Z ))) and f (1,g(Y ))

1 [X 7→ 1,Y 7→ f (Z )] (most general)
2 [X 7→ 1,Y 7→ f (Z ),W 7→ a]

3 [X 7→ 1,Y 7→ f (0),Z 7→ 0]

Substitution 1 specifies the minimal set of equations between variables and
terms needed to ensure unification
If two terms are unifiable, then there is always a most general unifier

Unification with regular terms: do f (1,X ) and X unify?
No, if X can only be substituted with finite terms: if X occurs in a term t ,
and t 6= X , then X and t do not unify (occurs check)
Yes, if X can be substituted with regular terms:
[X 7→ f (1, f (1, f (1, f (. . .))))]

f (1, f (1, f (1, f (. . .)))) is the unique solution of the syntactic equation
X = f (1,X )

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 11 / 32



Herbrand universe and base
Herbrand universe (HU)
Let S be a finite set (called signature) of functor names with their arities

inductive HU over S: all finite ground terms built on S
coinductive HUco over S: all finite and infinite ground terms built on S

Example: S = {z/0, s/1}
inductive HU over S: z, s(z), s(s(z)), . . .

coinductive HUco over S: inductive HU plus s(s(s(. . .

Atoms and Herbrand base (HB)
An atom: p(t1, . . . , tn), where p is a predicate symbol of arity n (written p/n),
and t1, . . . , tn are n terms.
An atom is ground, when all terms t1, . . . , tn are ground.
Example of atoms: is nat(s(z)),odd(s(X )),geq(s(s(Y )), s(X ))

inductive HB: all finite ground atoms
coinductive HBco: all finite and infinite ground atoms

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 12 / 32



Herbrand interpretation of predicate symbols

Example
Let geq/2 be a predicate symbol.
The interpretation of geq/2: a predicate, that is, a function taking two ground
terms and returning either false or true
Predicate symbol interpretation as sets of ground atoms: all and only all
ground atoms that are true

{geq(z, z),geq(s(z), z),geq(s(z), s(z)), . . .}

A predicate symbol interpretation is a subset of HB

In fact, the interpretation of a predicate is a set of tuples, that is, a relation.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 13 / 32



Definite Horn clauses
Definite Horn clauses (or simply Horn clauses) are meta-rules

Example
geq(X ,Y ),geq(Y ,X )

eq(X ,Y )

premises
conclusion

Intended meaning:
if geq(X ,Y ) and geq(Y ,X ) hold, then eq(X ,Y ) holds as well.

Prolog notation: eq(X ,Y ) :- geq(X ,Y ),geq(Y ,X ).
Prolog terminology: head :- body

Facts
A fact is a meta-rule with no premises (an axiom) (or a Horn clause with an
empty body). Example:

is nat(z)

Intended meaning: is nat(z) holds
Prolog notation: is nat(z).

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 14 / 32



Ground instantiations of Horn clauses

Ground instantiations of Horn clauses are rules obtained by applying a
grounding substitution to a Horn clause (a meta-rule)

Example
geq(s(s(z)), s(z)),geq(s(z), s(s(z)))

eq(s(s(z)), s(z))

is a rule which is the ground instantiation of the meta-rule

geq(X ,Y ),geq(Y ,X )

eq(X ,Y )

obtained by applying the substitution {X 7→ s(s(z)),Y 7→ s(z)}

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 15 / 32



Logic programs as inference systems
Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example
Functors: s/1, z/0
Predicates: is nat/1
Horn clauses/meta-rules:

is nat(z)

is nat(N)

is nat(s(N))

Interpretation of logic programs
How predicate is nat is defined by the meta-rules above?
Two equivalent ways to define the abstract (or declarative) semantics of an
inference system

1 based on fixed points
2 based on proof trees

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 16 / 32



Logic programs as inference systems
Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example
Functors: s/1, z/0
Predicates: is nat/1
Horn clauses/meta-rules:
In Prolog notation

is nat(z).
is nat(s(N)) :- is nat(N).

Interpretation of logic programs
How predicate is nat is defined by the meta-rules above?
Two equivalent ways to define the abstract (or declarative) semantics of an
inference system

1 based on fixed points
2 based on proof trees

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 16 / 32



Logic programs as inference systems
Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example
Functors: s/1, z/0
Predicates: is nat/1
Horn clauses/meta-rules:
In Prolog notation

is nat(z).
is nat(s(N)) :- is nat(N).

Interpretation of logic programs
How predicate is nat is defined by the meta-rules above?
Two equivalent ways to define the abstract (or declarative) semantics of an
inference system

1 based on fixed points
2 based on proof trees

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 16 / 32



Fixed point semantics

Fixed point of one step inference function

Example
Function directly defined in terms of the meta-rules
Intuition: f (A) = all ground atoms that can be inferred in one step from A with
the rules (= ground instantiations of the meta-rules)

f (A) = {is nat(z)} ∪ {is nat(s(t)) | is nat(t) ∈ A}

Remarks:
is nat(z) is a fact, hence it can be inferred in one step from any set
A is a set of ground atoms
t is a ground term

is nat(t)
is nat(s(t))

is a ground instantiation of
is nat(N)

is nat(s(N))

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 17 / 32



One step inference

General definition
Given a set A of ground atoms, and the generic meta-rule R

p1(t̄1), . . . ,pn(t̄n)

p0(t̄0)

where t̄0, . . . , t̄n are tuples of terms

p0(ḡ0) can be inferred in one step from A with R iff

1
p1(ḡ1), . . . ,pn(ḡn)

p0(ḡ0)
is a ground instantiation of R

2 and {p1(ḡ1), . . . ,pn(ḡn)} ⊆ A

Remark: if R is an axiom, then 2 trivially holds since ∅ ⊆ A

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 18 / 32



Inductive and coinductive interpretation with fixed
points (1)

One step inference is always a monotone function
By the Tarski-Knaster theorem f has a least and a greatest fixed point
Inductive interpretation: lfp f , f : ℘(HB)→ ℘(HB)

Coinductive interpretation: gfp f , f : ℘(HBco)→ ℘(HBco)

One step inference is always a function f preserving sup of ascending
chain f 0(∅) ⊆ . . . ⊆ f n(∅) ⊆
One step inference is a function f preserving inf of descending chain
f 0(U) ⊇ . . . ⊇ f n(U) ⊇ only when U = HBco

We can apply the Kleene theorem to compute the least and the greatest
fixed point

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 19 / 32



Inductive and coinductive interpretation with fixed
points (2)

Example with meta-rules for is nat
f (A) = {is nat(z)} ∪ {is nat(s(t)) | is nat(t) ∈ A}

f (∅) = {is nat(z)}
f 2(∅) = f ({is nat(z)}) = {is nat(z), is nat(s(z))}
. . .
f n(∅) = {is nat(z), is nat(s(z)), . . . , is nat(sn(z))} (sn(z) = s applied to z n times)

lfp f = {is nat(sn(z)) | n ∈ N}

f (HBco) = {is nat(sn(z)) | n ∈ N} ∪ {is nat(s∞)} = HBco

gfp f = {is nat(sn(z)) | n ∈ N} ∪ {is nat(s∞)} = HBco

Remark
let s∞ denote the solution of X = s(X )
is nat(s∞) ∈ f (HBco) since s(s∞) = s∞, is nat(s∞) ∈ HBco

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 20 / 32



Inductive and coinductive interpretation with fixed
points (3)

Another example
Let f be the one step inference of the following Horn clauses:

p(s(N)) :- p(N).
q :- p(N).

f n(∅) = ∅ for all n ∈ N, hence lfp f = ∅

f 1(HB) = {p(sk (z)) | k ≥ 1} ∪ {q}
f n(HB) = {p(sk (z)) | k ≥ n} ∪ {q}
inf{f n(HB) | n ∈ N} = {q}, but f ({q}) = ∅, and gfp (f : ℘(HB)→ ℘(HB)) = ∅

f 1(HBco) = {p(sk (z)) | k ≥ 1} ∪ {q,p(s∞)}
f n(HBco) = {p(sk (z)) | k ≥ n} ∪ {q,p(s∞)}
inf{f n(HB) | n ∈ N} = {q,p(s∞)}
gfp (f : ℘(HBco)→ ℘(HBco)) = {q,p(s∞)}

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 21 / 32



A naive procedure for checking if a ground atom holds
Directly inspired by the Kleene theorem

Inductive interpretation: p(̄t) ∈ lfp f?
1 A = ∅
2 if p(̄t) ∈ A then return yes

3 if f (A) = A then return no

4 A = f (A)

5 repeat from point 2

Coinductive interpretation: p(̄t) ∈ gfp f?
1 A = HBco

2 if p(̄t) 6∈ A then return no

3 if f (A) = A then return yes

4 A = f (A)

5 repeat from point 2

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 22 / 32



Problems with this procedure

it may not terminate
it computes much more atoms than what is actually required
the computed sets of atoms are often infinite: a symbolic representation
is needed

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 23 / 32



Proof tree
Intuition: build the least set of ground atoms needed to show that a ground
atom holds

Remark: the depth of the proof tree may be infinite for the coinductive
interpretation

Example
Functors: s/1, z/0
Predicate symbols: geq/2,eq/2
Meta-rules:

R1
geq(N, z)

R2
geq(M,N)

geq(s(M), s(N))

R3
geq(M,N),geq(N,M)

eq(M,N)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 24 / 32



Proof tree
Intuition: build the least set of ground atoms needed to show that a ground
atom holds

Remark: the depth of the proof tree may be infinite for the coinductive
interpretation

Example
Proof tree showing that eq(s(z), s(z)) holds

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 24 / 32



Infinite proof trees

Example
Proof tree showing that geq(s∞, s∞) holds

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 25 / 32



Infinite proof trees

Example
In fact, such a proof tree is regular

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 25 / 32



Proof tree: generalization

Definition of proof tree
nodes are labeled by ground atoms
for all nodes n0, with children n1, . . . ,nk
if ni is labeled by pi (t̄i ) for all i = 0, . . . , k

then
p1(t̄1), . . . ,pk (t̄k )

p0(t̄0)
must be an instantiation of a meta-rule

Remark: if n0 is a leaf (no children), then such a meta-rule must
necessarily be an axiom

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 26 / 32



Inductive and coinductive interpretation (proof trees)
inductive interpretation: {p(̄t) ∈ HB | there is a finite proof tree for p(̄t)}
coinductive interpretation: {p(̄t) ∈ HBco | there is a proof tree for p(̄t)}

Example with meta-rules for is nat

is nat(z)

is nat(N)

is nat(s(N))

Inductive interpretation: {is nat(sn(z)) | n ∈ N}
Coinductive interpretation: {is nat(sn(z)) | n ∈ N} ∪ {is nat(s∞)}

Equivalence between fixed point and proof tree interpretation
p(̄t) ∈ lfp (f ) iff there is a finite proof tree for p(̄t)
p(̄t) ∈ gfp (f ) iff there is a proof tree for p(̄t)

Proof: see [LeroyGrall2009]

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 27 / 32



Induction and coinduction principle (1)

General claims
Induction principle: if f :℘(U)→ ℘(U), f monotone, and S f -closed
(f (S) ⊆ S), then lfp f ⊆ S
Coinduction principle: if f :℘(U)→ ℘(U), f monotone, and S f -dense
(S ⊆ f (S)), then S ⊆ gfp f
Both principles are direct consequences of the Tarski-Knaster theorem
Proof by induction: if X = lfp f , f monotone, then to prove the claim

∀ x ∈ U, x ∈ X ⇒ x ∈ S

it is sufficient (but not necessary) to prove that S is f -closed
Proof by coinduction: if X = gfp f , f monotone, then to prove the claim

∀ x ∈ U, x ∈ S ⇒ x ∈ X

it is sufficient (but not necessary) to prove that S is f -dense

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 28 / 32



Induction and coinduction principle (2)

More specific claims for inference systems
Induction principle

I f one step inference

I S f -closed = for all
p1(t̄1), . . . , pn(t̄n)

p(̄t)
rules of the system, if

p1(t̄1), . . . , pn(t̄n) ∈ S, then p(̄t) ∈ S

Coinduction principle
I f one step inference

I S f -dense = for all p(̄t) ∈ S, there exists a rule
p1(t̄1), . . . , pn(t̄n)

p(̄t)
of the

system, s.t. p1(t̄1), . . . , pn(t̄n) ∈ S

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 29 / 32



Induction principle

Example
Functors: s/1, z/0
Predicate symbols: p/1
Meta-rules:

p(z)

p(N)

p(s(s(s(s(N)))))

Let I = lfp (f :℘(HB)→ ℘(HB)) (inductive interpretation)
1 I ⊆ {p(s2n(z)) | n ∈ N}
2 I ⊆ {p(s4n(z)) | n ∈ N}

Both 1 and 2 can be proved by applying the induction principle
Remarks:

I ⊆ {p(s2n(z)) | n ∈ N} ∪ {s(z)} and {p(s4n(z)) | n ∈ N} ⊆ I hold, but
cannot be directly proved by the induction principle
{p(s2n(z)) | n ∈ N} ⊆ I does not hold

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 30 / 32



Coinduction principle (1)

Example
Functors: s/1, z/0
Predicate symbols: q/1
Meta-rules:

q(z)

q(N)

q(s(s(N)))

Let I = gfp (f :℘(HBco)→ ℘(HBco)) (coinductive interpretation)
1 {q(s∞),q(z)} ⊆ I
2 {q(s∞)} ∪ {q(s2n(z)) | n ∈ N} ⊆ I

Both 1 and 2 can be proved by applying the coinduction principle
Remarks:

{q(s(s(z)))} ⊆ I and I ⊆ {q(s∞)} ∪ {q(s2n(z)) | n ∈ N} hold, but cannot
be directly proved by the coinduction principle
I ⊆ {q(s∞),q(z)} does not hold

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 31 / 32



Coinduction principle (2)

Example
Functors: s/1, z/0
Predicate symbols: p/1
Meta-rules:

p(z)

p(N)

p(s(s(s(s(N)))))

Let I = lfp (f :℘(HB)→ ℘(HB)) (inductive interpretation)
{p(s4n(z)) | n ∈ N} ⊆ I can be proved by using the coinduction principle

1 lfp (f :℘(HB)→ ℘(HB)) = gfp (f :℘(HB)→ ℘(HB)), because there exist only
finite proof trees

2 {p(s4n(z)) | n ∈ N} ⊆ I can be proved by the coinduction principle!

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 32 / 32


