Part 2
Logic programs as inference systems
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Terms

Concrete and abstract syntax
Let us consider the expression: 2 * (3 + X)

@ concrete syntax: the expression is a string made of seven characters
(which must obey some well-formedness rule)

@ abstract syntax: emphasis on the inherent hierarchical structure.
2 % (3 + X) corresponds to a tree:

root node

Ve
Q
leaf: no children / \ Wil ) il
ya /*
!\ 2 [+

Standard textual representation:
x(2,+(3, X)), or times(2, plus(3, X)) if we prefer names over special
characters.
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Functors, arities and variables

Elementary blocks
Terms are built on top of
@ operation names/symbols (called functors in Prolog)

@ logical variables (or simply variables); we use the standard Prolog
convention: variables begin with an upper case letter

Arity
Every functor is associated with a fixed and finite arity
@ plus/2 means plus has arity 2 (it takes two arguments)
@ plus/1, plus/2: two distinct functors with the same name, but different
arities
@ 3 is a functor with arity 0, that is, a constant

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 3/32



Terms and trees

Well-formedness rules
Terms are trees where nodes are labeled by functors or variables
@ standard rules on well-formed trees (see next slides)

@ a node labeled by a functor of arity n must have exactly n children.
Consequence: constants can only label leaves

@ variables can only label leaves

Ground terms
A term is ground if it contains no variables
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More on trees (1)

Standard rules

@ There exists a unique node, called root, with no parents
@ All other nodes have exactly one parent
@ The ancestor/descendant relation cannot be cyclic
The ancestor/descendant relation is the transitive closure of the parent/child

relation.
This is not a tree (rule 3 does not hold)

4
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More on trees (2)

Finite and infinite trees

We use finite /infinite trees for representing terms and proofs (see later).
@ Branching is always finite
@ Depth is allowed to be infinite

Example:

This tree represents the infinite term f(1, f(1, f(1, f(. ..

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 6/32



Regular trees
Definition
A tree is regular if it represents a term that has a finite number of subterms.

Equivalent terminology: rational tree (we will discover why) Examples:
@ All finite trees are regular

@ The following infinite tree is regular:

@ The following tree is not regular:

L)/O\;)
o o
e
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Representing infinite regular trees

Infinite regular trees as graphs

Graphs generalize trees (trees are particular kinds of graphs)
An infinite regular tree and its finite representation as a graph

Intuition: the graph infinitely unfolds to the regular tree
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Substitutions

Definition

A substitution is a finite mapping from variables to terms.
Example: o = [X — f(1), Y — X]

Application of ¢ to terms:

@ Xo=1(1)
@ g(X, Y)o = g(f(1), X) (variables are substituted in parallel)

o f(Z)o = f(Z) (variables for which no substitution is specified are implicitly

mapped to themselves)

4

Composition of substitutions

Composition of substitutions o and o»:
the map o = o102 s.t. to = (to1)op for all terms ¢

Grounding substitution
A substitution ¢ is grounding for a term t if fo is a ground term
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Matching and unification

Matching (functional programming)

A term £ matches a term & if there exists a substitution o s.t. t = fo.
Usually ¢t is ground and & is not, and . does not contain distinct variables
(even though these conditions are not strictly necessary).
Examples:

@ f(1,9(2)) matches (X, g(Y)) with substitution [X — 1, Y — 2]

@ f(1,2) does not match f(X, g(Y))

Unification (logic programming)
Terms t; and & unify if there exists a substitution o s.t. o = fo.
Examples:
e f(X,g(f(2))) and f(1,g(Y)) unify with substitution [X — 1, Y — f(Z)]
@ f(X,2)and f(1, X) do not unify

Matching is unidirectional, unification is bidirectional
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More on unification
Most general unifier

The following are all valid unifiers for f(X, g(f(Z))) and f(1, g(Y))
@ [X —1,Y — f(2)] (most general)

Q X—=1,Y=f(2),W g

Q [X—1,Y£(0),Z+ 0]

Substitution 1 specifies the minimal set of equations between variables and
terms needed to ensure unification

If two terms are unifiable, then there is always a most general unifier

Unification with regular terms: do f(1, X) and X unify?

@ No, if X can only be substituted with finite terms: if X occurs in a term ¢,
and t # X, then X and t do not unify (occurs check)

@ Yes, if X can be substituted with regular terms:
[X — f(1,f(1,f(1,£(...))))]

f(1,f(1,f(1,f(...)))) is the unique solution of the syntactic equation
X =1f(1,X)

vy
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Herbrand universe and base

Herbrand universe (HU)
Let S be a finite set (called signature) of functor names with their arities

@ inductive HU over S: all finite ground terms built on S

@ coinductive HU® over S: all finite and infinite ground terms built on S
Example: S = {z/0,s/1}

@ inductive HU over S: z, s(z), s(s(2)), . ..

@ coinductive HU® over S: inductive HU plus s(s(s(. . .

Atoms and Herbrand base (HB)

An atom: p(t,..., ), where p is a predicate symbol of arity n (written p/n),
and t,...,t, are nterms.
An atom is ground, when all terms 4, ..., t, are ground.

Example of atoms: is_nat(s(z)), odd(s(X)), geq(s(s(Y)), s(X))
@ inductive HB: all finite ground atoms
@ coinductive HB: all finite and infinite ground atoms

V.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 12/32



Herbrand interpretation of predicate symbols

Example

Let geq/2 be a predicate symbol.

The interpretation of geg/2: a predicate, that is, a function taking two ground
terms and returning either false or true

Predicate symbol interpretation as sets of ground atoms: all and only all
ground atoms that are true

{9eq(z,2), geq(s(2), 2), geq(s(2), s(2)), - - -}

A predicate symbol interpretation is a subset of HB

In fact, the interpretation of a predicate is a set of tuples, that is, a relation.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 13/32



Definite Horn clauses
Definite Horn clauses (or simply Horn clauses) are meta-rules
Example

geq(X,Y),geq(Y, X) premises
eq(X,Y) conclusion

Intended meaning:

if geq(X, Y) and geq(Y, X) hold, then eq(X, Y) holds as well.
Prolog notation: eq(X, Y) :- geq(X, Y), geq(Y, X).
Prolog terminology: head :- body

Facts

A fact is a meta-rule with no premises (an axiom) (or a Horn clause with an
empty body). Example:

is_nat(z)

Intended meaning: is_nat(z) holds
Prolog notation: is_nat(z).

v
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Ground instantiations of Horn clauses

Ground instantiations of Horn clauses are rules obtained by applying a
grounding substitution to a Horn clause (a meta-rule)

Example

geq(s(s(2)), s(2)), geq(s(2), s(s(2)))
eq(s(s(2)), s(2))
is a rule which is the ground instantiation of the meta-rule

geq(X,Y),geq(Y, X)
eq(X,Y)

obtained by applying the substitution {X — s(s(z)), Y — s(z2)}
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Logic programs as inference systems

Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)
A simple example

Functors: s/1, z/0
Predicates: is_nat/1
Horn clauses/meta-rules:

is_nat(z)

is_nat(N)
is_nat(s(N))
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Logic programs as inference systems
Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example

Functors: s/1, z/0
Predicates: is_nat/1
Horn clauses/meta-rules:
In Prolog notation
is_nat(z).
is_nat(s(N)) :- is_nat(N).
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Logic programs as inference systems
Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example

Functors: s/1, z/0
Predicates: is_nat/1
Horn clauses/meta-rules:
In Prolog notation
is_nat(z).
is_nat(s(N)) :- is_nat(N).

Interpretation of logic programs

How predicate is_nat is defined by the meta-rules above?
Two equivalent ways to define the abstract (or declarative) semantics of an
inference system

@ based on fixed points
@ based on proof trees

W
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Fixed point semantics

Fixed point of one step inference function

Example

Function directly defined in terms of the meta-rules

Intuition: f(A) = all ground atoms that can be inferred in one step from A with
the rules (= ground instantiations of the meta-rules)

f(A) = {is_nat(z)} U {is_nat(s(t)) | is_nat(t) € A}
Remarks:
@ is_nat(z) is a fact, hence it can be inferred in one step from any set
@ Ais a set of ground atoms
@ tis aground term

i is a ground instantiation of B
is_nat(s(t)) g is_nat(s(N))
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One step inference

General definition
Given a set A of ground atoms, and the generic meta-rule R

,01(1'_1)7 e ’p"(t_”)
po(b)

where by, ..., 1, are tuples of terms

Po(Jo) can be inferred in one step from A with R iff

o p1(g1), - ~_7Pn(§7n)
Po(do)

Q and {pi(g1). ..., Pa(gn)} € A

Remark: if R is an axiom, then 2 trivially holds since ) C A

is a ground instantiation of R
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Inductive and coinductive interpretation with fixed
points (1)

@ One step inference is always a monotone function

@ By the Tarski-Knaster theorem f has a least and a greatest fixed point

@ Inductive interpretation: Ifp f, f : p(HB) — p(HB)

@ Coinductive interpretation: gfp f, f : p(HB*®) — p(HB®)

@ One step inference is always a function f preserving sup of ascending
chain fo()) C ... C () C

@ One step inference is a function f preserving inf of descending chain
O(U) 2 ... 2 f"(U) 2 only when U = HB*

@ We can apply the Kleene theorem to compute the least and the greatest
fixed point
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Inductive and coinductive interpretation with fixed
points (2)

Example with meta-rules for is_nat
f(A) = {is_nat(z)} U {is_nat(s(t)) | is_nat(t) € A}

f(0) = {is_nat(z)}
2(0) = f({is_nat(z)}) = {is_nat(z), is_nat(s(z))}

(0) = {is_nat(z2), is_nat(s(2)), .., is.nat(s"(2))} (z) - s applied o 2 ntimes)
Ifp f = {is_nat(s"(z)) | n € N}

f(HB®) = {is_nat(s"(z)) | n € N} U {is_nat(s>)} = HB®
gfp f = {is_nat(s"(z)) | n € N} U {is_nat(s>*)} = HB
Remark

let s> denote the solution of X = s(X)

is_nat(s>) € f(HB®) since s(s>°) = s>, is_nat(s>°) € HB®
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Inductive and coinductive interpretation with fixed
points (3)

Another example
Let f be the one step inference of the following Horn clauses:

P(s(N)) = p(N).
q - p(N).

(@) = 0 for all n € N, hence Ifp f = ()

f'(HB) = {p(s"(2)) | k > 1} U{q}

f"(HB) = {p(s*(2)) | k > n} U{q}
inf{f"(HB) | n e N} = {q}, but f({q}) = 0, and gfp (f : p(HB) — p(HB)) =0

f1(HB%) = {p(s“(2)) | k = 1} U {q.p(s>)}
f"(HB*) = {p(s"(2)) | k = n} U {q,p(s>)}
inf{f"(HB) | n € N} = {q, p(s>)}

gip (f : p(HB®) — p(HB®)) = {q, p(s)}
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A naive procedure for checking if a ground atom holds
Directly inspired by the Kleene theorem

Inductive interpretation: p(t) € Ifp ?
Q A=0

Q if p(t) € Athen return yes

Q if f(A) = Athen return no

Q A= f(A)

@ repeat from point 2

Coinductive interpretation: p(t) € gfp f?
0 A — HB

Q if p(t) ¢ Athen return no

Q if f(A) = Athen return yes

Q A=f(A)

@ repeat from point 2
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Problems with this procedure

@ it may not terminate
@ it computes much more atoms than what is actually required

@ the computed sets of atoms are often infinite: a symbolic representation
is needed
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Proof tree

Intuition: build the least set of ground atoms needed to show that a ground
atom holds

Remark: the depth of the proof tree may be infinite for the coinductive
interpretation

Example

Functors: s/1, z/0
Predicate symbols: geq/2, eq/2
Meta-rules: -
geq(N, z)
geq(M, N)
geq(s(M), s(N))

gy 9e9(M.N), geq(N. M)
eq(M, N)
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Proof tree

Intuition: build the least set of ground atoms needed to show that a ground
atom holds

Remark: the depth of the proof tree may be infinite for the coinductive
interpretation

Example
Proof tree showing that eq(s(z), s(z)) holds

R3
Oeq(s(z) s@)
/ \ R2

Ogeq(S(Z) s(2) | )geq(S(Z) s(2))

| l

( ) geq(z,2) bgeq(z,z)
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Infinite proof trees

Example
Proof tree showing that geqg(s>, s*°) holds

R2
O geq(s”,s?)
R2
O geq(s”,s”)
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Infinite proof trees

Example
In fact, such a proof tree is regular

R2
ﬁ geq(s”,s”)
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Proof tree: generalization

Definition of proof tree
@ nodes are labeled by ground atoms

@ for all nodes ng, with children ny, ..., ng
if n; is labeled by p;(t) forall i =0, ...,k

p1(t_1)7»pk(ﬁ()

= must be an instantiation of a meta-rule
Po(to)

then

Remark: if ng is a leaf (no children), then such a meta-rule must
necessarily be an axiom
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Inductive and coinductive interpretation (proof trees)

@ inductive interpretation: {p(t) € HB| there is a finite proof tree for p(t)}
@ coinductive interpretation: {p(t) € HB* | there is a proof tree for p(t)}

Example with meta-rules for is_nat
is_nat(z)

is_nat(N)
is_nat(s(N))
Inductive interpretation: {is_nat(s"(z)) | n € N}
Coinductive interpretation: {is_nat(s"(z)) | n € N} U {is_nat(s>°)}

Equivalence between fixed point and proof tree interpretation

@ p(t) € Ifp (f) iff there is a finite proof tree for p(t)
@ p(t) € gfp (f) iff there is a proof tree for p(t)

Proof: see [LeroyGrall2009]

vy
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Induction and coinduction principle (1)

General claims

@ Induction principle: if f:p(U) — p(U), f monotone, and S f-closed
(f(S) € S), thenlfpfC S

@ Coinduction principle: if f:p(U) — o(U), f monotone, and S f-dense
(SCf(S)),then SC gfp f

@ Both principles are direct consequences of the Tarski-Knaster theorem

@ Proof by induction: if X = Ifp f, f monotone, then to prove the claim

VxelUxeX=xe8S

it is sufficient (but not necessary) to prove that S is f-closed
@ Proof by coinduction: if X = gfp f, f monotone, then to prove the claim

VxelUxeS=xeX

it is sufficient (but not necessary) to prove that S is f-dense
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Induction and coinduction principle (2)

More specific claims for inference systems
@ Induction principle

f one step inference _
| p1(t1)7 . '_'7p"(t")
_ _ p(t).
pi(t),...,pa(ta) € S, then p(t) € S

S f-closed = for al rules of the system, if

@ Coinduction principle
f one step inference

S f-dense = for all p(f) € S, there exists a rule w of the

system, s.t. pi(f),...,pn(fh) € S
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Induction principle

Example

Functors: s/1, z/0
Predicate symbols: p/1

Meta-rules:
p(N)

p(z)  p(s(s(s(s(N)))))
Let I = Ifp (f:p(HB) — p(HB)) (inductive interpretation)
Q /S {p(s*"(2)) | n€ N}
Q /< {p(s*(2)) | ne N}

Both 1 and 2 can be proved by applying the induction principle
Remarks:
@ I C {p(s?"(2)) | n€ N} U {s(z)} and {p(s*"(2)) | n € N} C I hold, but
cannot be directly proved by the induction principle
@ {p(s?"(z)) | n € N} C I does not hold
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Coinduction principle (1)

Example

Functors: s/1, z/0
Predicate symbols: g/1

Meta-rules:
q(N)
q(z)  q(s(s(N)))
Let / = gfp (f:p(HB®) — p(HB®)) (coinductive interpretation)
Q {a(s*).q(2)} </
Q {g(s™)}u{a(s*'(2)) | neN} C I

Both 1 and 2 can be proved by applying the coinduction principle
Remarks:

@ {q(s(s(2)))} C land I C {g(s>)} U {q(s*"(2)) | n € N} hold, but cannot
be directly proved by the coinduction principle

@ / C {g(s>),q(z)} does not hold
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Coinduction principle (2)

Example

Functors: s/1, z/0
Predicate symbols: p/1
Meta-rules:
p(N)
p(z)  p(s(s(s(s(N)))))

@ Let / =Ifp (f:p(HB) — p(HB)) (inductive interpretation)

@ {p(s*"(2)) | n € N} C I can be proved by using the coinduction principle

Q Ifp (f:p(HB) — p(HB)) = gfp (f:p(HB) — p(HB)), because there exist only
finite proof trees

@ {p(s*"(2)) | n € N} C I can be proved by the coinduction principle!
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