Part 2 Logic programs as inference systems

Ancona, Zucca (Univ. di Genova)

Declarative Programming and (Co)Induction

DIBRIS, June 26-27, 2014 1 / 32

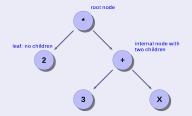
< 67 ▶

Terms

Concrete and abstract syntax

Let us consider the expression: 2 * (3 + X)

- concrete syntax: the expression is a string made of seven characters (which must obey some well-formedness rule)
- abstract syntax: emphasis on the inherent hierarchical structure. 2 * (3 + X) corresponds to a tree:



Standard textual representation:

*(2, +(3, X)), or *times*(2, plus(3, X)) if we prefer names over special characters.

Functors, arities and variables

Elementary blocks

Terms are built on top of

- operation names/symbols (called functors in Prolog)
- logical variables (or simply variables); we use the standard Prolog convention: variables begin with an upper case letter

Arity

Every functor is associated with a fixed and finite arity

- *plus*/2 means *plus* has arity 2 (it takes two arguments)
- plus/1, plus/2: two distinct functors with the same name, but different arities
- 3 is a functor with arity 0, that is, a constant

Terms and trees

Well-formedness rules

Terms are trees where nodes are labeled by functors or variables

- standard rules on well-formed trees (see next slides)
- a node labeled by a functor of arity *n* must have exactly *n* children. Consequence: constants can only label leaves
- variables can only label leaves

Ground terms

A term is ground if it contains no variables

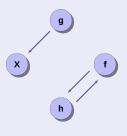
More on trees (1)

Standard rules

- There exists a unique node, called root, with no parents
- All other nodes have exactly one parent
- The ancestor/descendant relation cannot be cyclic

The ancestor/descendant relation is the transitive closure of the parent/child relation.

This is not a tree (rule 3 does not hold)



More on trees (2)

Finite and infinite trees

We use finite /infinite trees for representing terms and proofs (see later).

- Branching is always finite
- Depth is allowed to be infinite

Example:

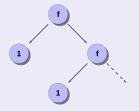


Image: A matrix and a matrix

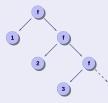
Regular trees

Definition

A tree is regular if it represents a term that has a finite number of subterms. Equivalent terminology: rational tree (we will discover why) Examples:

- All finite trees are regular
- The following infinite tree is regular:

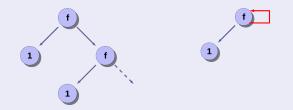
• The following tree is not regular:



Representing infinite regular trees

Infinite regular trees as graphs

Graphs generalize trees (trees are particular kinds of graphs) An infinite regular tree and its finite representation as a graph



Intuition: the graph infinitely unfolds to the regular tree

Substitutions

Definition

A substitution is a finite mapping from variables to terms. Example: $\sigma = [X \mapsto f(1), Y \mapsto X]$ Application of σ to terms:

•
$$X\sigma = f(1)$$

- $g(X, Y)\sigma = g(f(1), X)$ (variables are substituted in parallel)
- *f*(*Z*)σ = *f*(*Z*) (variables for which no substitution is specified are implicitly mapped to themselves)

Composition of substitutions

Composition of substitutions σ_1 and σ_2 : the map $\sigma = \sigma_1 \sigma_2$ s.t. $t\sigma = (t\sigma_1)\sigma_2$ for all terms t

Grounding substitution

A substitution σ is grounding for a term *t* if $t\sigma$ is a ground term

Ancona, Zucca (Univ. di Genova)

・ロ・・ 日・ ・ 日・ ・ 日

Matching and unification

Matching (functional programming)

A term t_1 matches a term t_2 if there exists a substitution σ s.t. $t_1 = t_2 \sigma$. Usually t_1 is ground and t_2 is not, and t_2 does not contain distinct variables (even though these conditions are not strictly necessary). Examples:

- f(1, g(2)) matches f(X, g(Y)) with substitution $[X \mapsto 1, Y \mapsto 2]$
- *f*(1,2) does not match *f*(*X*,*g*(*Y*))

Unification (logic programming)

Terms t_1 and t_2 unify if there exists a substitution σ s.t. $t_1\sigma = t_2\sigma$. Examples:

- f(X, g(f(Z))) and f(1, g(Y)) unify with substitution $[X \mapsto 1, Y \mapsto f(Z)]$
- f(X, 2) and f(1, X) do not unify

Matching is unidirectional, unification is bidirectional

More on unification

Most general unifier

The following are all valid unifiers for f(X, g(f(Z))) and f(1, g(Y))

•
$$[X \mapsto 1, Y \mapsto f(Z)]$$
 (most general)

$$(X \mapsto 1, Y \mapsto f(Z), W \mapsto a]$$

$$\bigcirc [X \mapsto 1, Y \mapsto f(0), Z \mapsto 0]$$

Substitution 1 specifies the minimal set of equations between variables and terms needed to ensure unification

If two terms are unifiable, then there is always a most general unifier

Unification with regular terms: do f(1, X) and X unify?

- No, if X can only be substituted with finite terms: if X occurs in a term t, and t ≠ X, then X and t do not unify (occurs check)
- Yes, if X can be substituted with regular terms: $[X \mapsto f(1, f(1, f(1, f(...))))]$

f(1, f(1, f(1, f(...)))) is the unique solution of the syntactic equation X = f(1, X)

Herbrand universe and base

Herbrand universe (HU)

Let S be a finite set (called signature) of functor names with their arities

- inductive HU over S: all finite ground terms built on S
- coinductive HU^{co} over S: all finite and infinite ground terms built on S

Example: $S = \{z/0, s/1\}$

- inductive *HU* over *S*: *z*, *s*(*z*), *s*(*s*(*z*)), . . .
- coinductive HU^{co} over S: inductive HU plus s(s(...))

Atoms and Herbrand base (HB)

An atom: $p(t_1, ..., t_n)$, where *p* is a predicate symbol of arity *n* (written p/n), and $t_1, ..., t_n$ are *n* terms. An atom is ground, when all terms $t_1, ..., t_n$ are ground. Example of atoms: $is_nat(s(z)), odd(s(X)), geq(s(s(Y)), s(X))$

- inductive HB: all finite ground atoms
- coinductive *HB^{co}*: all finite and infinite ground atoms

Herbrand interpretation of predicate symbols

Example

Let geq/2 be a predicate symbol.

The interpretation of geq/2: a predicate, that is, a function taking two ground terms and returning either *false* or *true* Predicate symbol interpretation as sets of ground atoms: all and only all ground atoms that are true

 $\{geq(z,z), geq(s(z),z), geq(s(z),s(z)), \ldots\}$

A predicate symbol interpretation is a subset of HB

In fact, the interpretation of a predicate is a set of tuples, that is, a relation.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Definite Horn clauses

Definite Horn clauses (or simply Horn clauses) are meta-rules

Example geq(X, Y), geq(Y, X)premises eq(X, Y)conclusion Intended meaning: if geq(X, Y) and geq(Y, X) hold, then eq(X, Y) holds as well. Prolog notation: eq(X, Y) := geq(X, Y), geq(Y, X).Prolog terminology: head :- body Facts A fact is a meta-rule with no premises (an axiom) (or a Horn clause with an empty body). Example: $is_nat(z)$ Intended meaning: $is_nat(z)$ holds Prolog notation: $is_nat(z)$. Ancona, Zucca (Univ. di Genova) DIBRIS, June 26-27, 2014 14/32

Ground instantiations of Horn clauses

Ground instantiations of Horn clauses are rules obtained by applying a grounding substitution to a Horn clause (a meta-rule)

Example

$$\frac{geq(s(s(z)), s(z)), geq(s(z), s(s(z)))}{eq(s(s(z)), s(z))}$$

is a rule which is the ground instantiation of the meta-rule

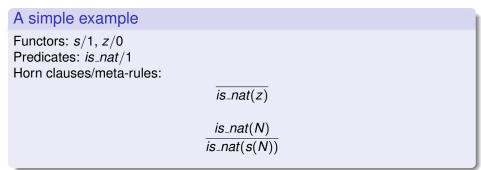
$$\frac{geq(X, Y), geq(Y, X)}{eq(X, Y)}$$

obtained by applying the substitution $\{X \mapsto s(s(z)), Y \mapsto s(z)\}$

ヘロト 人間 とくほ とくほう

Logic programs as inference systems

Inference systems as logic programs: defined by functors, predicate symbols, and a collection of meta-rules (a logic program, using the Prolog terminology)



< 同 > < 三 > < 三 >

Logic programs as inference systems

Inference systems as logic programs: defined by functors, predicate symbols, and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example

Functors: s/1, z/0Predicates: $is_nat/1$ Horn clauses/meta-rules: In Prolog notation

> *is_nat(z). is_nat(s(N))* :- *is_nat(N).*

Logic programs as inference systems

Inference systems as logic programs: defined by functors, predicate symbols, and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example

Functors: s/1, z/0Predicates: $is_nat/1$ Horn clauses/meta-rules: In Prolog notation

is_nat(z). is_nat(s(N)) :- is_nat(N).

Interpretation of logic programs

How predicate is_nat is defined by the meta-rules above? Two equivalent ways to define the abstract (or declarative) semantics of an inference system

- based on fixed points
- ased on proof trees

Fixed point semantics

Fixed point of one step inference function

Example

Function directly defined in terms of the meta-rules Intuition: f(A) =all ground atoms that can be inferred in one step from *A* with the rules (= ground instantiations of the meta-rules)

 $f(A) = \{is_nat(z)\} \cup \{is_nat(s(t)) \mid is_nat(t) \in A\}$

Remarks:

- is_nat(z) is a fact, hence it can be inferred in one step from any set
- A is a set of ground atoms
- t is a ground term

• $\frac{is_nat(t)}{is_nat(s(t))}$ is a ground instantiation of $\frac{is_nat(N)}{is_nat(s(N))}$

One step inference

General definition

Given a set A of ground atoms, and the generic meta-rule R

$$\frac{p_1(\bar{t_1}),\ldots,p_n(\bar{t_n})}{p_0(\bar{t_0})}$$

where $\bar{t_0}, \ldots, \bar{t_n}$ are tuples of terms

 $p_0(\bar{g}_0)$ can be inferred in one step from A with R iff

•
$$\frac{p_1(\bar{g}_1), \dots, p_n(\bar{g}_n)}{p_0(\bar{g}_0)}$$
 is a ground instantiation of *R*

(2) and
$$\{p_1(\bar{g_1}), \ldots, p_n(\bar{g_n})\} \subseteq A$$

Remark: if *R* is an axiom, then 2 trivially holds since $\emptyset \subseteq A$

・ 同 ト ・ ヨ ト ・ ヨ

Inductive and coinductive interpretation with fixed points (1)

- One step inference is always a monotone function
- By the Tarski-Knaster theorem f has a least and a greatest fixed point
- Inductive interpretation: Ifp $f, f : \wp(HB) \rightarrow \wp(HB)$
- Coinductive interpretation: gfp $f, f : \wp(HB^{co}) \rightarrow \wp(HB^{co})$
- One step inference is always a function *f* preserving sup of ascending chain *f*⁰(∅) ⊆ ... ⊆ *fⁿ*(∅) ⊆
- One step inference is a function *f* preserving inf of descending chain $f^0(U) \supseteq \ldots \supseteq f^n(U) \supseteq$ only when $U = HB^{co}$
- We can apply the Kleene theorem to compute the least and the greatest fixed point

Inductive and coinductive interpretation with fixed points (2)

Example with meta-rules for *is_nat*

```
f(A) = \{is\_nat(z)\} \cup \{is\_nat(s(t)) \mid is\_nat(t) \in A\}
```

$$f(\emptyset) = \{ is_nat(z) \}$$

$$f^2(\emptyset) = f(\{ is_nat(z) \}) = \{ is_nat(z), is_nat(s(z)) \}$$

$$f^{n}(\emptyset) = \{is_nat(z), is_nat(s(z)), \dots, is_nat(s^{n}(z))\} (s^{n}(z) = s \text{ applied to } z \text{ n times})$$

$$Ifp \ f = \{is_nat(s^{n}(z)) \mid n \in \mathbb{N}\}$$

$$f(HB^{co}) = \{is_nat(s^n(z)) \mid n \in \mathbb{N}\} \cup \{is_nat(s^{\infty})\} = HB^{co}$$

gfp f = {is_nat(s^n(z)) \mid n \in \mathbb{N}\} \cup {is_nat(s^{\infty})} = HB^{co}
Remark

let s^{∞} denote the solution of X = s(X) $is_nat(s^{\infty}) \in f(HB^{co})$ since $s(s^{\infty}) = s^{\infty}$, $is_nat(s^{\infty}) \in HB^{co}$

er as

. . .

- 3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Inductive and coinductive interpretation with fixed points (3)

Another example

Let *f* be the one step inference of the following Horn clauses:

p(s(N)) := p(N).q := p(N).

 $f^n(\emptyset) = \emptyset$ for all $n \in \mathbb{N}$, hence lfp $f = \emptyset$

$$\begin{split} &f^{1}(HB) = \{p(s^{k}(z)) \mid k \geq 1\} \cup \{q\} \\ &f^{n}(HB) = \{p(s^{k}(z)) \mid k \geq n\} \cup \{q\} \\ &\inf\{f^{n}(HB) \mid n \in \mathbb{N}\} = \{q\}, \text{ but } f(\{q\}) = \emptyset, \text{ and gfp } (f : \wp(HB) \to \wp(HB)) = \emptyset \end{split}$$

$$\begin{split} &f^{1}(HB^{co}) = \{p(s^{k}(z)) \mid k \geq 1\} \cup \{q, p(s^{\infty})\} \\ &f^{n}(HB^{co}) = \{p(s^{k}(z)) \mid k \geq n\} \cup \{q, p(s^{\infty})\} \\ &\inf\{f^{n}(HB) \mid n \in \mathbb{N}\} = \{q, p(s^{\infty})\} \\ &gfp(f : \wp(HB^{co}) \to \wp(HB^{co})) = \{q, p(s^{\infty})\} \end{split}$$

- 3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A naive procedure for checking if a ground atom holds

Directly inspired by the Kleene theorem

Inductive interpretation: $p(\overline{t}) \in \text{lfp } f$?

- $\bigcirc A = \emptyset$
- 3 if $p(\overline{t}) \in A$ then return yes
- if f(A) = A then return no
- $\bullet A = f(A)$
- repeat from point 2

Coinductive interpretation: $p(\overline{t}) \in \text{gfp } f$?

- $A = HB^{co}$
- (2) if $p(\overline{t}) \notin A$ then return no
- if f(A) = A then return yes
- A = f(A)
- repeat from point 2

< 🗗 > <

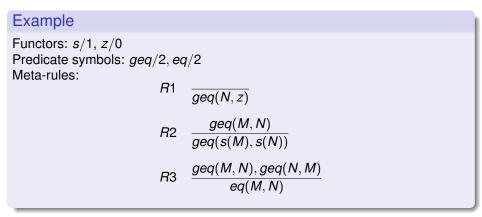
Problems with this procedure

- it may not terminate
- it computes much more atoms than what is actually required
- the computed sets of atoms are often infinite: a symbolic representation is needed

Proof tree

Intuition: build the least set of ground atoms needed to show that a ground atom holds

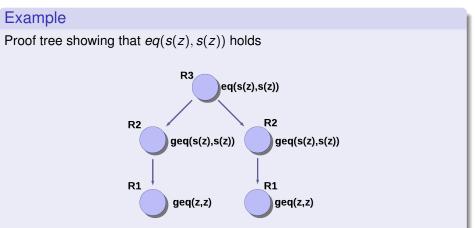
Remark: the depth of the proof tree may be infinite for the coinductive interpretation



Proof tree

Intuition: build the least set of ground atoms needed to show that a ground atom holds

Remark: the depth of the proof tree may be infinite for the coinductive interpretation



Infinite proof trees

Example

Proof tree showing that $geq(s^{\infty}, s^{\infty})$ holds



3

イロト イヨト イヨト

Infinite proof trees

Example

In fact, such a proof tree is regular

Ancona, Zucca (Univ. di Genova)

geq(s^{°°},s^{°°})

Proof tree: generalization

Definition of proof tree

- nodes are labeled by ground atoms

then
$$\frac{p_1(\bar{t}_1), \dots, p_k(\bar{t}_k)}{p_0(\bar{t}_0)}$$
 must be an instantiation of a meta-rule

Remark: if n_0 is a leaf (no children), then such a meta-rule must necessarily be an axiom

Inductive and coinductive interpretation (proof trees)

- inductive interpretation: $\{p(\bar{t}) \in HB \mid \text{ there is a finite proof tree for } p(\bar{t})\}$
- coinductive interpretation: $\{p(\bar{t}) \in HB^{co} \mid \text{ there is a proof tree for } p(\bar{t})\}$

Example with meta-rules for *is_nat*

 $\overline{is_nat(z)}$

 $\frac{is_nat(N)}{is_nat(s(N))}$

Inductive interpretation: $\{is_nat(s^n(z)) \mid n \in \mathbb{N}\}\$ Coinductive interpretation: $\{is_nat(s^n(z)) \mid n \in \mathbb{N}\} \cup \{is_nat(s^{\infty})\}\$

Equivalence between fixed point and proof tree interpretation

- $p(\overline{t}) \in \text{lfp}(f)$ iff there is a finite proof tree for $p(\overline{t})$
- $p(\overline{t}) \in \text{gfp}(f)$ iff there is a proof tree for $p(\overline{t})$

Proof: see [LeroyGrall2009]

Induction and coinduction principle (1)

General claims

- Induction principle: if $f: \wp(U) \to \wp(U)$, *f* monotone, and *S f*-closed $(f(S) \subseteq S)$, then lfp $f \subseteq S$
- Coinduction principle: if $f:\wp(U) \to \wp(U)$, *f* monotone, and *S f*-dense $(S \subseteq f(S))$, then $S \subseteq gfp f$
- Both principles are direct consequences of the Tarski-Knaster theorem
- Proof by induction: if X = Ifp f, f monotone, then to prove the claim

$$\forall x \in U, x \in X \Rightarrow x \in S$$

it is sufficient (but not necessary) to prove that S is f-closed

• Proof by coinduction: if X = gfp f, f monotone, then to prove the claim

$$\forall x \in U, x \in S \Rightarrow x \in X$$

it is sufficient (but not necessary) to prove that S is f-dense

Induction and coinduction principle (2)

More specific claims for inference systems

- Induction principle
 - f one step inference
 - S f-closed = for all $\frac{p_1(\bar{t}_1), \dots, p_n(\bar{t}_n)}{p(\bar{t})}$ rules of the system, if $p_1(\bar{t}_1), \dots, p_n(\bar{t}_n) \in S$, then $p(\bar{t}) \in S$

Coinduction principle

- f one step inference
- *S f*-dense = for all $p(\bar{t}) \in S$, there exists a rule $\frac{p_1(\bar{t}_1), \dots, p_n(\bar{t}_n)}{p(\bar{t})}$ of the system, s.t. $p_1(\bar{t}_1), \dots, p_n(\bar{t}_n) \in S$

A (B) + A (B) + A (B) +

Induction principle

Example

Functors: s/1, z/0Predicate symbols: p/1Meta-rules:

$\frac{p(N)}{p(z)} \qquad \frac{p(N)}{p(s(s(s(N)))))}$

- Let I = Ifp $(f:\wp(HB) \rightarrow \wp(HB))$ (inductive interpretation)
- $I \subseteq \{p(s^{2n}(z)) \mid n \in \mathbb{N}\}$
- $I \subseteq \{ p(s^{4n}(z)) \mid n \in \mathbb{N} \}$

Both 1 and 2 can be proved by applying the induction principle Remarks:

- $I \subseteq \{p(s^{2n}(z)) \mid n \in \mathbb{N}\} \cup \{s(z)\}$ and $\{p(s^{4n}(z)) \mid n \in \mathbb{N}\} \subseteq I$ hold, but cannot be directly proved by the induction principle
- $\{p(s^{2n}(z)) \mid n \in \mathbb{N}\} \subseteq I$ does not hold

・ロト ・回ト ・ヨト ・ヨト - ヨ

Coinduction principle (1)

Example

Functors: s/1, z/0Predicate symbols: q/1Meta-rules:

$$\frac{q(N)}{q(s(s(N)))}$$

Let $I = gfp \ (f:\wp(HB^{co}) \rightarrow \wp(HB^{co}))$ (coinductive interpretation)

a

$$\bigcirc \ \{q(s^{\infty}),q(z)\} \subseteq I$$

Both 1 and 2 can be proved by applying the coinduction principle Remarks:

- $\{q(s(s(z)))\} \subseteq I$ and $I \subseteq \{q(s^{\infty})\} \cup \{q(s^{2n}(z)) \mid n \in \mathbb{N}\}$ hold, but cannot be directly proved by the coinduction principle
- $I \subseteq \{q(s^{\infty}), q(z)\}$ does not hold

Coinduction principle (2)

Example

Functors: s/1, z/0Predicate symbols: p/1Meta-rules:

$$\frac{p(N)}{p(z)} \qquad \frac{p(N)}{p(s(s(s(N)))))}$$

- Let I = Ifp $(f: \wp(HB) \rightarrow \wp(HB))$ (inductive interpretation)
- {p(s⁴ⁿ(z)) | n ∈ N} ⊆ I can be proved by using the coinduction principle
 Ifp (f:℘(HB) → ℘(HB)) = gfp (f:℘(HB) → ℘(HB)), because there exist only finite proof trees
 - ② { $p(s^{4n}(z)) | n \in \mathbb{N}$ } ⊆ *I* can be proved by the coinduction principle!