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Logic programs as inference systems
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Terms
Concrete and abstract syntax
Let us consider the expression: 2 ∗ (3 + X )

concrete syntax: the expression is a string made of seven characters
(which must obey some well-formedness rule)
abstract syntax: emphasis on the inherent hierarchical structure.
2 ∗ (3 + X ) corresponds to a tree:

Standard textual representation:
∗(2,+(3,X )), or times(2,plus(3,X )) if we prefer names over special
characters.
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Functors, arities and variables

Elementary blocks
Terms are built on top of

operation names/symbols (called functors in Prolog)
logical variables (or simply variables); we use the standard Prolog
convention: variables begin with an upper case letter

Arity
Every functor is associated with a fixed and finite arity

plus/2 means plus has arity 2 (it takes two arguments)
plus/1, plus/2: two distinct functors with the same name, but different
arities
3 is a functor with arity 0, that is, a constant
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Terms and trees

Well-formedness rules
Terms are trees where nodes are labeled by functors or variables

standard rules on well-formed trees (see next slides)
a node labeled by a functor of arity n must have exactly n children.
Consequence: constants can only label leaves
variables can only label leaves

Ground terms
A term is ground if it contains no variables
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More on trees (1)
Standard rules

1 There exists a unique node, called root, with no parents
2 All other nodes have exactly one parent
3 The ancestor/descendant relation cannot be cyclic

The ancestor/descendant relation is the transitive closure of the parent/child
relation.
This is not a tree (rule 3 does not hold)
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More on trees (2)

Finite and infinite trees
We use finite /infinite trees for representing terms and proofs (see later).

Branching is always finite
Depth is allowed to be infinite

Example:

This tree represents the infinite term f (1, f (1, f (1, f (. . .
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Regular trees
Definition
A tree is regular if it represents a term that has a finite number of subterms.
Equivalent terminology: rational tree (we will discover why) Examples:

All finite trees are regular
The following infinite tree is regular:

The following tree is not regular:
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Representing infinite regular trees

Infinite regular trees as graphs
Graphs generalize trees (trees are particular kinds of graphs)
An infinite regular tree and its finite representation as a graph

Intuition: the graph infinitely unfolds to the regular tree
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Substitutions

Definition
A substitution is a finite mapping from variables to terms.
Example: σ = [X 7→ f (1),Y 7→ X ]
Application of σ to terms:

Xσ = f (1)

g(X ,Y )σ = g(f (1),X ) (variables are substituted in parallel)
f (Z )σ = f (Z ) (variables for which no substitution is specified are implicitly
mapped to themselves)

Composition of substitutions
Composition of substitutions σ1 and σ2:
the map σ = σ1σ2 s.t. tσ = (tσ1)σ2 for all terms t

Grounding substitution
A substitution σ is grounding for a term t if tσ is a ground term
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Matching and unification

Matching (functional programming)
A term t1 matches a term t2 if there exists a substitution σ s.t. t1 = t2σ.
Usually t1 is ground and t2 is not, and t2 does not contain distinct variables
(even though these conditions are not strictly necessary).
Examples:

f (1,g(2)) matches f (X ,g(Y )) with substitution [X 7→ 1,Y 7→ 2]

f (1,2) does not match f (X ,g(Y ))

Unification (logic programming)
Terms t1 and t2 unify if there exists a substitution σ s.t. t1σ = t2σ.
Examples:

f (X ,g(f (Z ))) and f (1,g(Y )) unify with substitution [X 7→ 1,Y 7→ f (Z )]

f (X ,2) and f (1,X ) do not unify

Matching is unidirectional, unification is bidirectional
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More on unification
Most general unifier
The following are all valid unifiers for f (X ,g(f (Z ))) and f (1,g(Y ))

1 [X 7→ 1,Y 7→ f (Z )] (most general)
2 [X 7→ 1,Y 7→ f (Z ),W 7→ a]

3 [X 7→ 1,Y 7→ f (0),Z 7→ 0]

Substitution 1 specifies the minimal set of equations between variables and
terms needed to ensure unification
If two terms are unifiable, then there is always a most general unifier

Unification with regular terms: do f (1,X ) and X unify?
No, if X can only be substituted with finite terms: if X occurs in a term t ,
and t 6= X , then X and t do not unify (occurs check)
Yes, if X can be substituted with regular terms:
[X 7→ f (1, f (1, f (1, f (. . .))))]

f (1, f (1, f (1, f (. . .)))) is the unique solution of the syntactic equation
X = f (1,X )
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Herbrand universe and base
Herbrand universe (HU)
Let S be a finite set (called signature) of functor names with their arities

inductive HU over S: all finite ground terms built on S
coinductive HUco over S: all finite and infinite ground terms built on S

Example: S = {z/0, s/1}
inductive HU over S: z, s(z), s(s(z)), . . .

coinductive HUco over S: inductive HU plus s(s(s(. . .

Atoms and Herbrand base (HB)
An atom: p(t1, . . . , tn), where p is a predicate symbol of arity n (written p/n),
and t1, . . . , tn are n terms.
An atom is ground, when all terms t1, . . . , tn are ground.
Example of atoms: is nat(s(z)),odd(s(X )),geq(s(s(Y )), s(X ))

inductive HB: all finite ground atoms
coinductive HBco: all finite and infinite ground atoms
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Herbrand interpretation of predicate symbols

Example
Let geq/2 be a predicate symbol.
The interpretation of geq/2: a predicate, that is, a function taking two ground
terms and returning either false or true
Predicate symbol interpretation as sets of ground atoms: all and only all
ground atoms that are true

{geq(z, z),geq(s(z), z),geq(s(z), s(z)), . . .}

A predicate symbol interpretation is a subset of HB

In fact, the interpretation of a predicate is a set of tuples, that is, a relation.
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Definite Horn clauses
Definite Horn clauses (or simply Horn clauses) are meta-rules

Example
geq(X ,Y ),geq(Y ,X )

eq(X ,Y )

premises
conclusion

Intended meaning:
if geq(X ,Y ) and geq(Y ,X ) hold, then eq(X ,Y ) holds as well.

Prolog notation: eq(X ,Y ) :- geq(X ,Y ),geq(Y ,X ).
Prolog terminology: head :- body

Facts
A fact is a meta-rule with no premises (an axiom) (or a Horn clause with an
empty body). Example:

is nat(z)

Intended meaning: is nat(z) holds
Prolog notation: is nat(z).
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Ground instantiations of Horn clauses

Ground instantiations of Horn clauses are rules obtained by applying a
grounding substitution to a Horn clause (a meta-rule)

Example
geq(s(s(z)), s(z)),geq(s(z), s(s(z)))

eq(s(s(z)), s(z))

is a rule which is the ground instantiation of the meta-rule

geq(X ,Y ),geq(Y ,X )

eq(X ,Y )

obtained by applying the substitution {X 7→ s(s(z)),Y 7→ s(z)}
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Logic programs as inference systems
Inference systems as logic programs: defined by functors, predicate symbols,
and a collection of meta-rules (a logic program, using the Prolog terminology)

A simple example
Functors: s/1, z/0
Predicates: is nat/1
Horn clauses/meta-rules:

is nat(z)

is nat(N)

is nat(s(N))

Interpretation of logic programs
How predicate is nat is defined by the meta-rules above?
Two equivalent ways to define the abstract (or declarative) semantics of an
inference system

1 based on fixed points
2 based on proof trees
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Fixed point semantics

Fixed point of one step inference function

Example
Function directly defined in terms of the meta-rules
Intuition: f (A) = all ground atoms that can be inferred in one step from A with
the rules (= ground instantiations of the meta-rules)

f (A) = {is nat(z)} ∪ {is nat(s(t)) | is nat(t) ∈ A}

Remarks:
is nat(z) is a fact, hence it can be inferred in one step from any set
A is a set of ground atoms
t is a ground term

is nat(t)
is nat(s(t))

is a ground instantiation of
is nat(N)

is nat(s(N))
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One step inference

General definition
Given a set A of ground atoms, and the generic meta-rule R

p1(t̄1), . . . ,pn(t̄n)

p0(t̄0)

where t̄0, . . . , t̄n are tuples of terms

p0(ḡ0) can be inferred in one step from A with R iff

1
p1(ḡ1), . . . ,pn(ḡn)

p0(ḡ0)
is a ground instantiation of R

2 and {p1(ḡ1), . . . ,pn(ḡn)} ⊆ A

Remark: if R is an axiom, then 2 trivially holds since ∅ ⊆ A
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Inductive and coinductive interpretation with fixed
points (1)

One step inference is always a monotone function
By the Tarski-Knaster theorem f has a least and a greatest fixed point
Inductive interpretation: lfp f , f : ℘(HB)→ ℘(HB)

Coinductive interpretation: gfp f , f : ℘(HBco)→ ℘(HBco)

One step inference is always a function f preserving sup of ascending
chain f 0(∅) ⊆ . . . ⊆ f n(∅) ⊆
One step inference is a function f preserving inf of descending chain
f 0(U) ⊇ . . . ⊇ f n(U) ⊇ only when U = HBco

We can apply the Kleene theorem to compute the least and the greatest
fixed point
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Inductive and coinductive interpretation with fixed
points (2)

Example with meta-rules for is nat
f (A) = {is nat(z)} ∪ {is nat(s(t)) | is nat(t) ∈ A}

f (∅) = {is nat(z)}
f 2(∅) = f ({is nat(z)}) = {is nat(z), is nat(s(z))}
. . .
f n(∅) = {is nat(z), is nat(s(z)), . . . , is nat(sn(z))} (sn(z) = s applied to z n times)

lfp f = {is nat(sn(z)) | n ∈ N}

f (HBco) = {is nat(sn(z)) | n ∈ N} ∪ {is nat(s∞)} = HBco

gfp f = {is nat(sn(z)) | n ∈ N} ∪ {is nat(s∞)} = HBco

Remark
let s∞ denote the solution of X = s(X )
is nat(s∞) ∈ f (HBco) since s(s∞) = s∞, is nat(s∞) ∈ HBco
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Inductive and coinductive interpretation with fixed
points (3)

Another example
Let f be the one step inference of the following Horn clauses:

p(s(N)) :- p(N).
q :- p(N).

f n(∅) = ∅ for all n ∈ N, hence lfp f = ∅

f 1(HB) = {p(sk (z)) | k ≥ 1} ∪ {q}
f n(HB) = {p(sk (z)) | k ≥ n} ∪ {q}
inf{f n(HB) | n ∈ N} = {q}, but f ({q}) = ∅, and gfp (f : ℘(HB)→ ℘(HB)) = ∅

f 1(HBco) = {p(sk (z)) | k ≥ 1} ∪ {q,p(s∞)}
f n(HBco) = {p(sk (z)) | k ≥ n} ∪ {q,p(s∞)}
inf{f n(HB) | n ∈ N} = {q,p(s∞)}
gfp (f : ℘(HBco)→ ℘(HBco)) = {q,p(s∞)}
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A naive procedure for checking if a ground atom holds
Directly inspired by the Kleene theorem

Inductive interpretation: p(̄t) ∈ lfp f?
1 A = ∅
2 if p(̄t) ∈ A then return yes

3 if f (A) = A then return no

4 A = f (A)

5 repeat from point 2

Coinductive interpretation: p(̄t) ∈ gfp f?
1 A = HBco

2 if p(̄t) 6∈ A then return no

3 if f (A) = A then return yes

4 A = f (A)

5 repeat from point 2

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 22 / 32



Problems with this procedure

it may not terminate
it computes much more atoms than what is actually required
the computed sets of atoms are often infinite: a symbolic representation
is needed
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Proof tree
Intuition: build the least set of ground atoms needed to show that a ground
atom holds

Remark: the depth of the proof tree may be infinite for the coinductive
interpretation

Example
Functors: s/1, z/0
Predicate symbols: geq/2,eq/2
Meta-rules:

R1
geq(N, z)

R2
geq(M,N)

geq(s(M), s(N))

R3
geq(M,N),geq(N,M)

eq(M,N)
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Proof tree
Intuition: build the least set of ground atoms needed to show that a ground
atom holds

Remark: the depth of the proof tree may be infinite for the coinductive
interpretation

Example
Proof tree showing that eq(s(z), s(z)) holds
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Infinite proof trees

Example
Proof tree showing that geq(s∞, s∞) holds
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Infinite proof trees

Example
In fact, such a proof tree is regular

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 25 / 32



Proof tree: generalization

Definition of proof tree
nodes are labeled by ground atoms
for all nodes n0, with children n1, . . . ,nk
if ni is labeled by pi (t̄i ) for all i = 0, . . . , k

then
p1(t̄1), . . . ,pk (t̄k )

p0(t̄0)
must be an instantiation of a meta-rule

Remark: if n0 is a leaf (no children), then such a meta-rule must
necessarily be an axiom
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Inductive and coinductive interpretation (proof trees)
inductive interpretation: {p(̄t) ∈ HB | there is a finite proof tree for p(̄t)}
coinductive interpretation: {p(̄t) ∈ HBco | there is a proof tree for p(̄t)}

Example with meta-rules for is nat

is nat(z)

is nat(N)

is nat(s(N))

Inductive interpretation: {is nat(sn(z)) | n ∈ N}
Coinductive interpretation: {is nat(sn(z)) | n ∈ N} ∪ {is nat(s∞)}

Equivalence between fixed point and proof tree interpretation
p(̄t) ∈ lfp (f ) iff there is a finite proof tree for p(̄t)
p(̄t) ∈ gfp (f ) iff there is a proof tree for p(̄t)

Proof: see [LeroyGrall2009]
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Induction and coinduction principle (1)

General claims
Induction principle: if f :℘(U)→ ℘(U), f monotone, and S f -closed
(f (S) ⊆ S), then lfp f ⊆ S
Coinduction principle: if f :℘(U)→ ℘(U), f monotone, and S f -dense
(S ⊆ f (S)), then S ⊆ gfp f
Both principles are direct consequences of the Tarski-Knaster theorem
Proof by induction: if X = lfp f , f monotone, then to prove the claim

∀ x ∈ U, x ∈ X ⇒ x ∈ S

it is sufficient (but not necessary) to prove that S is f -closed
Proof by coinduction: if X = gfp f , f monotone, then to prove the claim

∀ x ∈ U, x ∈ S ⇒ x ∈ X

it is sufficient (but not necessary) to prove that S is f -dense
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Induction and coinduction principle (2)

More specific claims for inference systems
Induction principle

I f one step inference

I S f -closed = for all
p1(t̄1), . . . , pn(t̄n)

p(̄t)
rules of the system, if

p1(t̄1), . . . , pn(t̄n) ∈ S, then p(̄t) ∈ S

Coinduction principle
I f one step inference

I S f -dense = for all p(̄t) ∈ S, there exists a rule
p1(t̄1), . . . , pn(t̄n)

p(̄t)
of the

system, s.t. p1(t̄1), . . . , pn(t̄n) ∈ S
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Induction principle

Example
Functors: s/1, z/0
Predicate symbols: p/1
Meta-rules:

p(z)

p(N)

p(s(s(s(s(N)))))

Let I = lfp (f :℘(HB)→ ℘(HB)) (inductive interpretation)
1 I ⊆ {p(s2n(z)) | n ∈ N}
2 I ⊆ {p(s4n(z)) | n ∈ N}

Both 1 and 2 can be proved by applying the induction principle
Remarks:

I ⊆ {p(s2n(z)) | n ∈ N} ∪ {s(z)} and {p(s4n(z)) | n ∈ N} ⊆ I hold, but
cannot be directly proved by the induction principle
{p(s2n(z)) | n ∈ N} ⊆ I does not hold
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Coinduction principle (1)

Example
Functors: s/1, z/0
Predicate symbols: q/1
Meta-rules:

q(z)

q(N)

q(s(s(N)))

Let I = gfp (f :℘(HBco)→ ℘(HBco)) (coinductive interpretation)
1 {q(s∞),q(z)} ⊆ I
2 {q(s∞)} ∪ {q(s2n(z)) | n ∈ N} ⊆ I

Both 1 and 2 can be proved by applying the coinduction principle
Remarks:

{q(s(s(z)))} ⊆ I and I ⊆ {q(s∞)} ∪ {q(s2n(z)) | n ∈ N} hold, but cannot
be directly proved by the coinduction principle
I ⊆ {q(s∞),q(z)} does not hold
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Coinduction principle (2)

Example
Functors: s/1, z/0
Predicate symbols: p/1
Meta-rules:

p(z)

p(N)

p(s(s(s(s(N)))))

Let I = lfp (f :℘(HB)→ ℘(HB)) (inductive interpretation)
{p(s4n(z)) | n ∈ N} ⊆ I can be proved by using the coinduction principle

1 lfp (f :℘(HB)→ ℘(HB)) = gfp (f :℘(HB)→ ℘(HB)), because there exist only
finite proof trees

2 {p(s4n(z)) | n ∈ N} ⊆ I can be proved by the coinduction principle!

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 32 / 32


