
Declarative Programming and (Co)Induction
Module 2: inductive and coinductive Prolog

Davide Ancona and Elena Zucca

Università di Genova

PhD Course, DIBRIS, June 26-27, 2014

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 1 / 20

Part 1
Recursive definitions and fixed points

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 2 / 20

Induction and coinduction

What induction and coinduction are useful for?
Induction: definition of and reasoning on sets whose elements can be
generated in a finite number of steps
Natural numbers, finite lists, finite trees
Coinduction: definition of and reasoning on sets whose elements

I cannot be generated in a finite number of steps
I or can be cyclic/defined circularly

Real numbers, repeating decimals, infinite/circular lists, infinite/circular
trees, . . .

Regular coinduction
Useful for defining of and reasoning on finite cyclic entities: graphs, finite
automata, context-free grammars, recursive types, repeating decimals, . . .

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 3 / 20

Recursive definitions (1)

Equation or recursive definition?
Everybody is familiar with algebraic equations

x =
1 + x

2

Even though a bit unusual, the equation above can be also considered as a
(recursive) definition.

This is fine, since the equation admits just one solution.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 4 / 20

Recursive definitions (2)

Equation or recursive definition?
The following is a recursive definition

factorial n = i f n > 0 then n * factorial (n-1) else 1

but it may be considered an equation as well, with a unique solution

Other examples

increment [] = []
increment (x : l) = (x + 1) : increment l

allPosiive [] = True
allPositive (x : l) = x > 0 && allPositive l

But here there may be more then one solution ...

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 5 / 20

Recursive definitions (3)

Equation or recursive definition?
How many solutions does the following equation admit?

X = {0} ∪ X

Important observation:
the number of solutions depends on the domain of solutions

The equation admits the unique solution {0} for the power set ℘({0})
The equation admits infinite solutions for the power set of natural
numbers ℘(N): all sets S ∈ ℘(N) s.t. 0 ∈ S

However, there exixts a unique solution if we impose some constraint:
the least solution (inductive definition): X = {0}
the greatest solution (coinductive definition): X = N

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 6 / 20

Recursive definitions (3)

Equation or recursive definition?
How many solutions does the following equation admit?

X = {0} ∪ X

Important observation:
the number of solutions depends on the domain of solutions

The equation admits the unique solution {0} for the power set ℘({0})
The equation admits infinite solutions for the power set of natural
numbers ℘(N): all sets S ∈ ℘(N) s.t. 0 ∈ S

However, there exixts a unique solution if we impose some constraint:
the least solution (inductive definition): X = {0}
the greatest solution (coinductive definition): X = N

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 6 / 20

Recursive definitions (3)

Equation or recursive definition?
How many solutions does the following equation admit?

X = {0} ∪ X

Important observation:
the number of solutions depends on the domain of solutions

The equation admits the unique solution {0} for the power set ℘({0})
The equation admits infinite solutions for the power set of natural
numbers ℘(N): all sets S ∈ ℘(N) s.t. 0 ∈ S

However, there exixts a unique solution if we impose some constraint:
the least solution (inductive definition): X = {0}
the greatest solution (coinductive definition): X = N

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 6 / 20

Recursive definitions, functions and fixed points

Solutions as fixed points
A recursive definition can be easily turned into a function.

For instance X = {0} ∪ X corresponds to the function f :℘(N)→ ℘(N) s.t.

f (X) = {0} ∪ X

Then X is a solution of our equation iff X is a fixed point of f :

f (X) = X

In particular:
{0} is the least fixed point of f
N is the greatest fixed point of f

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 7 / 20

Power sets, partial orders and complete lattices (1)

Partial orders
(℘(N),⊆) is a partial order

reflexivity: for all X ∈ ℘(N), X ⊆ X
anti-symmetry: for all X ,Y ∈ ℘(N), X ⊆ Y and Y ⊆ X implies X = Y
transitivity: for all X ,Y ,Z ∈ ℘(N), X ⊆ Y and Y ⊆ Z implies X ⊆ Z

Supremum (least upper bound) and infimum (greatest lower
bound)
Let S ⊆ ℘(N) (S is a set of sets)

sup S = min{X ∈ ℘(N) | Y ⊆ X for all Y ∈ S}
inf S = max{X ∈ ℘(N) | X ⊆ Y for all Y ∈ S}

Suprema and infima are unique

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 8 / 20

Power sets, partial orders and complete lattices (2)

Complete lattices
(℘(N),⊆) is a particular partial order called complete lattice

every S ⊆ ℘(N) has supremum and infimum

Examples:
If S = {X ∈ ℘(N) | 0 ∈ X} then sup S = N, inf S = {0}
If S = {X ∈ ℘(N) | 0 6∈ X} then sup S = N \ {0}, inf S = ∅
If S = {X ∈ ℘(N) | X finite} then sup S = N, inf S = ∅

Though we will mainly deal with power sets ℘(U) over a given set U, called
universe, the results that follow apply to any complete lattice.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 9 / 20

Exercise: relation between sup and inf
inf S = sup{X | X ⊆ Y for all Y ∈ S}
Proof:

Let T = {X | X ⊆ Y for all Y ∈ S}
inf S ⊆ Y for all Y ∈ S (def. of inf)
inf S ∈ T (def. of T)
inf S ⊆ sup T (def. of sup)
X ⊆ Y for all X ∈ T and Y ∈ S (def. of T)
sup T ⊆ Y for all Y ∈ S (def. of sup)
sup T ⊆ inf S (def. of inf)
inf S = sup T (symmetry)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 10 / 20

f -closed and f -dense sets

Monotone function f :℘(U)→ ℘(U)

For all X ,Y ∈ ℘(U), X ⊆ Y implies f (X) ⊆ f (Y)

X ∈ ℘(U) is f -closed iff f (X) ⊆ X
X ∈ ℘(U) is f -dense (or f -justified, or f -consistent) iff X ⊆ f (X)

X ∈ ℘(U) is a fixed point of f iff f (X) = X

X fixed point of f iff X both f -closed and f -dense

Examples
If f : ℘(N)→ ℘(N) and f (X) = {0} ∪ {x + 2 | x ∈ X} then

N is f -closed, but not f -dense
∅ is f -dense, but not f -closed
{2x | x ∈ N} is a fixed point of f (which is unique in this particular case)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 11 / 20

Tarski-Knaster theorem (1)

Lemma
Let f :℘(U)→ ℘(U) be monotone

1 sup{X | X f -dense} is f -dense
2 inf{X | X f -closed} is f -closed

Proof of lemma
1 Let Y = sup{X | X ⊆ f (X)}

for all X f -dense, X ⊆ Y (def. of sup)
for all X f -dense, f (X) ⊆ f (Y) (f monotone)
for all X f -dense, X ⊆ f (X) ⊆ f (Y) (def. of f -dense)
for all X f -dense, X ⊆ f (Y) (transitivity)
Y ⊆ f (Y) (def. of sup)
Y is f -dense (def. f -dense)

2 Obtained from 1 by duality (replacing sup with inf and ⊆ with ⊇)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 12 / 20

Tarski-Knaster theorem (2)
Claim
Let f :℘(U)→ ℘(U) be monotone

1 f (sup{X | X f -dense}) = sup{X | X f -dense}
2 f (inf{X | X f -closed}) = inf{X | X f -closed}

Proof of theorem
1 Let Y = sup{X | X ⊆ f (X)}

Y ⊆ f (Y) (previous lemma) f (Y) ⊆ f (f (Y)) (f monotone)
f (Y) f -dense (def. f -dense) f (Y) ⊆ Y (def. sup)
f (Y) = Y (anti-symmetry)

2 Obtained from 1 by duality

Greatest and least fixed points
Since X fixed point of f implies X both f -closed and f -dense

sup{X | X f -dense} greatest fixed point of f (denoted by gfp f)
inf{X | X f -closed} least fixed point of f (denoted by lfp f)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 13 / 20

Kleene fixed point theorem (1)
How can lfp f and gfp f be constructed?

Continuous function f :℘(U)→ ℘(U)

f preserves sup and inf:
for all S ⊆ ℘(U)

I f (sup S) = sup{f (X)|X ∈ S}
I f (inf S) = inf{f (X)|X ∈ S}

Property
Continuous functions are always monotone.
X ⊆ Y implies sup{X ,Y} = Y implies f (Y) = sup{f (X), f (Y)} implies
f (X) ⊆ f (Y)

Iterated applications of f
f 0(X) = X
f n+1(X) = f (f n(X)) for all n ∈ N

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 14 / 20

Kleene fixed point theorem (2)

Claim
Let f :℘(U)→ ℘(U) be continuous.

1 lfp f = sup{f n(∅) | n ∈ N}
2 gfp f = inf{f n(U) | n ∈ N}

Proof
1 f (sup{f n(∅) | n ∈ N}) = sup{f n+1(∅) | n ∈ N} (f continuous)

sup{f n+1(∅) | n ∈ N} = sup{f n(∅) | n ∈ N} (f 0(∅) = ∅, def. of sup)
lfp f ⊆ sup{f n(∅) | n ∈ N} (def. of lfp f)
f 0(∅) ⊆ lfp f (f 0(∅) = ∅)
f n(∅) ⊆ lfp f implies f n+1(∅) ⊆ lfp f (f is monotone, def. of lfp f)
f n(∅) ⊆ lfp f for all n ∈ N (induction over n)
sup{f n(∅) | n ∈ N} ⊆ lfp f (def. of sup)
lfp f = sup{f n(∅) | n ∈ N} (symmetry)

2 Obtained from 1 by duality

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 15 / 20

Kleene fixed point theorem with weaker assumption

Ascending and descending chains
if f :℘(U)→ ℘(U) is monotone, then by induction over n:

I f 0(∅) ⊆ f 1(∅) ⊆ . . . f n(∅) ⊆ f n+1(∅) ⊆ . . . ascending chain
I f 0(U) ⊇ f 1(U) ⊇ . . . f n(U) ⊇ f n+1(U) ⊇ . . . descending chain

least fixed point
I f monotone, f preserves sup of ascending chains
I even weaker: f monotone, f preserves sup of ascending chain

f 0(∅) ⊆ . . . ⊆ f n(∅) ⊆
greatest fixed point

I f monotone, f preserves inf of descending chains
I even weaker: f monotone, f preserves inf of descending chain

f 0(U) ⊇ . . . ⊇ f n(U) ⊇
Remark: the underlying lattice does not need to be complete, it is only
required to be bounded

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 16 / 20

Application of the Kleene theorem (1)

Example 1
f1:℘(Q)→ ℘(Q) (Q is the set of rational numbers)

f1(X) = {0} ∪ {x + 1 | x ∈ X}

f1(∅) = {0}
f 2
1 (∅) = {0,1}
. . .
f n
1 (∅) = {x ≤ n − 1 | x ∈ N} for all n ≥ 1
lfp f1 = sup{f n

1 (∅) | n ∈ N} = N

f1(Q) = Q
. . .
f n
1 (Q) = Q
gfp f1 = Q

Exercise: show that if f1:℘(S)→ ℘(S), where S is the set of non negative
rational numbers, then the fixed point is unique, and compute it.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 17 / 20

Application of the Kleene theorem (2)

Example 2
Let [0,1] be the closed interval of real numbers

f2:℘([0,1])→ ℘([0,1])

f2(X) = {0} ∪ { x
2 | x ∈ X} ∪ { 1+x

2 | x ∈ X}

f2(∅) = {0}
f 2
2 (∅) = {0,

1
2}

. . .

f n
2 (∅) = {

∑i<n
i=1

bi
2i | bi ∈ {0,1}}

lfp f2 = sup{f n
2 (∅) | n ∈ N} = {

∑i<n
i=1

bi
2i | n ∈ N,bi ∈ {0,1}}

f2([0,1]) = [0,1]
. . .
f n
2 ([0,1]) = [0,1]
gfp f2 = inf{f n

2 ([0,1]) | n ∈ N} = [0,1]

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 18 / 20

Application of the Kleene theorem (3)

Example 3
f3:℘(N)→ ℘(N)

f3(X) = {x − x | x ∈ X , x > 0} ∪ {x + 1 | x ∈ X , x > 0}

f3(∅) = ∅
f 2
3 (∅) = ∅
. . .
f n
3 (∅) = ∅
lfp f3 = ∅

f3(N) = {0} ∪ {x ≥ 2 | x ∈ N}
f 2
3 (N) = {0} ∪ {x ≥ 3 | x ∈ N}
. . .
f n
3 (N) = {0} ∪ {x ≥ n + 1 | x ∈ N}
inf{f n

3 (N) | n ∈ N} = {0}
but f3({0}) = ∅, hence gfp f3 = ∅, and f3 does not preserve inf

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 19 / 20

Application of the Kleene theorem (4)

Remarks on the examples
lfp fi (gfp fi for i = 1,2
gfp fi depends on the fixed universe
For instance, in example 2 if U = [0,1] ∩ Q, then
f2(U) = U and gfp f2 = [0,1] ∩ Q

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 20 / 20

