Declarative Programming and (Co)Induction
Module 2: inductive and coinductive Prolog

Davide Ancona and Elena Zucca

Universita di Genova

PhD Course, DIBRIS, June 26-27, 2014

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 1/20

Part 1
Recursive definitions and fixed points

Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 2/20

Induction and coinduction

What induction and coinduction are useful for?
@ Induction: definition of and reasoning on sets whose elements can be
generated in a finite number of steps
Natural numbers, finite lists, finite trees
@ Coinduction: definition of and reasoning on sets whose elements
cannot be generated in a finite number of steps
or can be cyclic/defined circularly
Real numbers, repeating decimals, infinite/circular lists, infinite/circular
trees, ...

Regular coinduction

Useful for defining of and reasoning on finite cyclic entities: graphs, finite
automata, context-free grammars, recursive types, repeating decimals, .. .

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 3/20

Recursive definitions (1)

Equation or recursive definition?
Everybody is familiar with algebraic equations

X_1+x
)

Even though a bit unusual, the equation above can be also considered as a
(recursive) definition.

This is fine, since the equation admits just one solution.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

4/20

Recursive definitions (2)

Equation or recursive definition?

The following is a recursive definition

factorial n = if n > 0 then n x factorial (n-1) else 1
but it may be considered an equation as well, with a unique solution
Other examples

increment [] = []
increment (x : 1) = (x + 1) : increment 1

allPosiive [] = True
allPositive (x : 1) = x > 0 && allPositive 1

But here there may be more then one solution ...

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

5/20

Recursive definitions (3)

Equation or recursive definition?
How many solutions does the following equation admit?

X ={0}uX

Important observation:
the number of solutions depends on the domain of solutions

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

6/20

Recursive definitions (3)

Equation or recursive definition?
How many solutions does the following equation admit?

X={0tuX
Important observation:
the number of solutions depends on the domain of solutions

@ The equation admits the unique solution {0} for the power set p({0})

@ The equation admits infinite solutions for the power set of natural
numbers o(N): all sets S € p(N)s.t. 0 € S

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

6/20

Recursive definitions (3)

Equation or recursive definition?
How many solutions does the following equation admit?

X={0tuX
Important observation:
the number of solutions depends on the domain of solutions

@ The equation admits the unique solution {0} for the power set p({0})

@ The equation admits infinite solutions for the power set of natural
numbers o(N): all sets S € p(N)s.t. 0 € S

However, there exixts a unique solution if we impose some constraint:
@ the least solution (inductive definition): X = {0}
@ the greatest solution (coinductive definition): X = N

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

6/20

Recursive definitions, functions and fixed points

Solutions as fixed points
A recursive definition can be easily turned into a function.

For instance X = {0} U X corresponds to the function f:p(N) — ©(N) s.t.
f(X)={0}uX
Then X is a solution of our equation iff X is a fixed point of f:
f(X)=X

In particular:
@ {0} is the least fixed point of f
@ N is the greatest fixed point of f

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

7120

Power sets, partial orders and complete lattices (1)

Partial orders

(p(N), ©) is a partial order
o reflexivity: for all X € p(N), X C X
@ anti-symmetry: for all X, Y € o(N), X C Y and Y C X implies X = Y
@ transitivity: forall X, Y, Z € p(N), X C Yand Y C Zimplies X C Z

Supremum (least upper bound) and infimum (greatest lower
bound)
Let S C p(N) (Sis a set of sets)
@ supS=min{Xecp(N)|YC Xforall Y € S}
o infS=max{X e p(N)| X Yforall Y € S}
Suprema and infima are unique

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 8/20

Power sets, partial orders and complete lattices (2)

Complete lattices
(9(N), ©) is a particular partial order called complete lattice
@ every S C p(N) has supremum and infimum

Examples:
@ IfS={Xecp(N)|0ec X}thensupS =N, infS = {0}
@ IfS={Xe€p(N)|0¢gX}thensupS =N\ {0}, infS=1
@ If S={X € p(N) | X finite} then sup S =N, inf S = ()

Though we will mainly deal with power sets o(U) over a given set U, called
universe, the results that follow apply to any complete lattice.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

9/20

Exercise: relation between sup and inf

infS=sup{X | XC Yforall Y € S}
Proof:

Let T={X|XCYforall Y e S}

infS C Yforall Y € S (def. of inf)

infS e T (def. of T)

infS C sup T (def. of sup)
XCYforall X e Tand Y € S (def. of T)
sup T C Y forall Y € S (def. of sup)

sup T CinfS (def. of inf)

infS =sup T (symmetry)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 10/20

f-closed and f-dense sets

Monotone function f:p(U) — p(U)
Forall X, Y € p(U), X C Y implies f(X) C f(Y) J

@ X € p(U) is f-closed iff f(X) C X
@ X € p(U) is f-dense (or f-justified, or f-consistent) iff X C f(X)
@ X € p(U) is a fixed point of fiff f(X) = X

X fixed point of f iff X both f-closed and f-dense

Examples
Iff: p(N) = p(N)and f(X) ={0} U{x+2 | x € X} then
@ N is f-closed, but not f-dense
@ () is f-dense, but not f-closed
@ {2x | x € N} is a fixed point of f (which is unique in this particular case)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 11/20

Tarski-Knaster theorem (1)

Lemma

Let f:p(U) — p(U) be monotone
@ sup{X | X f-dense} is f-dense
Q@ inf{X | X f-closed} is f-closed

Proof of lemma

Q Let Y =sup{X| X Cf(X)}
for all X f-dense, X C Y (def. of sup)
for all X f-dense, f(X) C f(Y) (f monotone)
for all X f-dense, X C f(X) C f(Y) (def. of f-dense)
for all X f-dense, X C f(Y) (transitivity)
Y C f(Y) (def. of sup)
Y is f-dense (def. f-dense)

@ Obtained from 1 by duality (replacing sup with inf and C with D)

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 12/20

Tarski-Knaster theorem (2)

Claim

Let f:p(U) — p(U) be monotone
@ f(sup{X | X f-dense}) = sup{X | X f-dense}
Q f(inf{X | X f-closed}) = inf{X | X f-closed}

Proof of theorem

@ Let Y =sup{X | X Cf(X)}
Y C f(Y) (previous lemma) f(Y)
f(Y) f-dense (def. f-dense) f(Y)
f(Y) = Y (anti-symmetry)

© Obtained from 1 by duality

C f(f(Y)) (f monotone)
C Y (def. sup)

Greatest and least fixed points

Since X fixed point of f implies X both f-closed and f-dense
@ sup{X | X f-dense} greatest fixed point of f (denoted by gfp f)
@ inf{X | X f-closed} least fixed point of f (denoted by Ifp f)

o’

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 13/20

Kleene fixed point theorem (1)

How can Ifp f and gfp f be constructed?

Continuous function f:p(U) — o(U)
@ f preserves sup and inf:
forall S C p(U)
f(sup S) = sup{f(X)|X € S}
f(inf S) = inf{f(X)|X € S}

Property

Continuous functions are always monotone.

X C Y implies sup{X, Y} = Y implies f(Y) = sup{f(X), f(Y)} implies
f(X) Cf(Y)

Iterated applications of f

(X) = X
fr1(X) = f(f"(X)) forall n e N

W

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 14/20

Kleene fixed point theorem (2)

Claim
Let f:p(U) — p(U) be continuous.
Q Ifp f =sup{f"(0) | ne N}

Q dofp f =inf{f"(U) | n € N}

Proof

@ 7(sup{f"(0) | n € N}) = sup{f™'(0) | n € N} (f continuous)
sup{f™1(0) | n € N} = sup{f"(0) | n € N} (f°(0) = 0, def. of sup)
pr f C sup{f"(®) | n € N} (def. of Ifp f)
f9(0) C Ifp f (fO(0) = 0)
() C Ifp f implies f"+1(() C Ifp f (f is monotone, def. of Ifp)
() C Ifp f for all n € N (induction over n)
sup{f"(0) | n € N} C Ifp f (def. of sup)
Ifp f = sup{f"(D) | n € N} (symmetry)

© Obtained from 1 by duality

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 15/20

Kleene fixed point theorem with weaker assumption

Ascending and descending chains

o if f:p(U) — p(U) is monotone, then by induction over n:
°(0) C f1(0) C ... 1"(0) C f"'(0) C ... ascending chain
(U) D f'(U) D...f"(U) D "' (U) D ... descending chain
@ least fixed point
f monotone, f preserves sup of ascending chains
even weaker: f monotone, f preserves sup of ascending chain
) C ... C"(0) C
@ greatest fixed point
f monotone, f preserves inf of descending chains
even weaker: f monotone, f preserves inf of descending chain
PU)D ... 2 M(U) D
@ Remark: the underlying lattice does not need to be complete, it is only
required to be bounded

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 16/20

Application of the Kleene theorem (1)

Example 1
fi:p(Q) — p(Q) (Q is the set of rational numbers)
(X)={0}U{x+1]|xe X}

h(0) = {0}
f2(0) = {01}

}1;7'(‘2))={X§n—1 | x e N} foralln> 1
Ifp i = sup{f(0) | n€ N} =N

f(Q) =
(Q) = Q
ofp f =Q

Exercise: show that if f;:p(S) — ©(S), where S is the set of non negative
rational numbers, then the fixed point is unique, and compute it.

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014

17/20

Application of the Kleene theorem (2)

Example 2
Let [0, 1] be the closed interval of real numbers

f:p([0,1]) — ([0, 1])
R(X)={0} U {3 | xe XJU{1$* | xe X}
fz(@) = {0}
£(0) = {0, 1}
B(0) = {(C7 % bief{o1}}
Ifp 2 = sup{#(0) | n€ N} = {X1=7 & | ne N, by € {0, 1}}
f2([07 1]) = [Ov 1]

£(10,1]) = [0, 1]
ofp £ =inf{fJ([0,1]) | n € N} =[0,1]

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 18/20

Application of the Kleene theorem (3)

Example 3
f:p(N) = p(N)
BX)={x—x|xeX,x>0tu{x+1|xeX, x>0}

F(0) =0
£2(0) = 0
7(0) = 0
Ifp 5 = 0

f(N)= {0} U{x>2]|xeN}
f2(N) = {0} U{x >3 | x €N}

f(N) = {0} U{x>n+1]|xeN}
inf{fJ(N) | n € N} = {0}
but ;({0}) = 0, hence gfp f3 = 0, and f3 does not preserve inf

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction DIBRIS, June 26-27, 2014 19/20

Application of the Kleene theorem (4)

Remarks on the examples
o lfpfiCgfpfifori=1,2

@ gfp f; depends on the fixed universe
For instance, in example 2 if U = [0,1] N Q, then
h(U)=Uandgfp L =1[0,11NQ

Ancona, Zucca (Univ. di Genova) Declarative Programming and (Co)Induction

DIBRIS, June 26-27, 2014

20/20

