Declarative Programming and (Co)Induction

 Module 2: inductive and coinductive PrologDavide Ancona and Elena Zucca

Università di Genova
PhD Course, DIBRIS, June 26-27, 2014

Part 1
 Recursive definitions and fixed points

Induction and coinduction

What induction and coinduction are useful for?

- Induction: definition of and reasoning on sets whose elements can be generated in a finite number of steps
Natural numbers, finite lists, finite trees
- Coinduction: definition of and reasoning on sets whose elements
cannot be generated in a finite number of steps
or can be cyclic/defined circularly
Real numbers, repeating decimals, infinite/circular lists, infinite/circular trees, ...

Regular coinduction

Useful for defining of and reasoning on finite cyclic entities: graphs, finite automata, context-free grammars, recursive types, repeating decimals, ...

Recursive definitions (1)

Equation or recursive definition?

Everybody is familiar with algebraic equations

$$
x=\frac{1+x}{2}
$$

Even though a bit unusual, the equation above can be also considered as a (recursive) definition.

This is fine, since the equation admits just one solution.

Recursive definitions (2)

Equation or recursive definition?

The following is a recursive definition

```
factorial n = if n > 0 then n * factorial (n-1) else 1
```

but it may be considered an equation as well, with a unique solution
Other examples

```
increment [] = []
increment (x : l) = (x + 1) : increment l
allPosiive [] = True
allPositive (x : l) = x > 0 && allPositive l
```

But here there may be more then one solution ...

Recursive definitions (3)

Equation or recursive definition?

How many solutions does the following equation admit?

$$
X=\{0\} \cup X
$$

Important observation:
the number of solutions depends on the domain of solutions

Recursive definitions (3)

Equation or recursive definition?

How many solutions does the following equation admit?

$$
X=\{0\} \cup X
$$

Important observation:
the number of solutions depends on the domain of solutions

- The equation admits the unique solution $\{0\}$ for the power set $\wp(\{0\})$
- The equation admits infinite solutions for the power set of natural numbers $\wp(\mathbb{N})$: all sets $S \in \wp(\mathbb{N})$ s.t. $0 \in S$

Recursive definitions (3)

Equation or recursive definition?

How many solutions does the following equation admit?

$$
X=\{0\} \cup X
$$

Important observation:
the number of solutions depends on the domain of solutions

- The equation admits the unique solution $\{0\}$ for the power set $\wp(\{0\})$
- The equation admits infinite solutions for the power set of natural numbers $\wp(\mathbb{N})$: all sets $S \in \wp(\mathbb{N})$ s.t. $0 \in S$
However, there exixts a unique solution if we impose some constraint:
- the least solution (inductive definition): $X=\{0\}$
- the greatest solution (coinductive definition): $X=\mathbb{N}$

Recursive definitions, functions and fixed points

Solutions as fixed points

A recursive definition can be easily turned into a function.
For instance $X=\{0\} \cup X$ corresponds to the function $f: \wp(\mathbb{N}) \rightarrow \wp(\mathbb{N})$ s.t.

$$
f(X)=\{0\} \cup X
$$

Then X is a solution of our equation iff X is a fixed point of f :

$$
f(X)=X
$$

In particular:

- $\{0\}$ is the least fixed point of f
- \mathbb{N} is the greatest fixed point of f

Power sets, partial orders and complete lattices (1)

Partial orders

$(\wp(\mathbb{N}), \subseteq)$ is a partial order

- reflexivity: for all $X \in \wp(\mathbb{N}), X \subseteq X$
- anti-symmetry: for all $X, Y \in \wp(\mathbb{N}), X \subseteq Y$ and $Y \subseteq X$ implies $X=Y$
- transitivity: for all $X, Y, Z \in \wp(\mathbb{N}), X \subseteq Y$ and $Y \subseteq Z$ implies $X \subseteq Z$

Supremum (least upper bound) and infimum (greatest lower bound)

Let $S \subseteq \wp(\mathbb{N})$ (S is a set of sets)

- $\sup S=\min \{X \in \wp(\mathbb{N}) \mid Y \subseteq X$ for all $Y \in S\}$
- inf $S=\max \{X \in \wp(\mathbb{N}) \mid X \subseteq Y$ for all $Y \in S\}$

Suprema and infima are unique

Power sets, partial orders and complete lattices (2)

Complete lattices

$(\wp(\mathbb{N}), \subseteq)$ is a particular partial order called complete lattice

- every $S \subseteq \wp(\mathbb{N})$ has supremum and infimum

Examples:

- If $S=\{X \in \wp(\mathbb{N}) \mid 0 \in X\}$ then $\sup S=\mathbb{N}$, inf $S=\{0\}$
- If $S=\{X \in \wp(\mathbb{N}) \mid 0 \notin X\}$ then $\sup S=\mathbb{N} \backslash\{0\}$, inf $S=\emptyset$
- If $S=\{X \in \wp(\mathbb{N}) \mid X$ finite $\}$ then $\sup S=\mathbb{N}, \inf S=\emptyset$

Though we will mainly deal with power sets $\wp(U)$ over a given set U, called universe, the results that follow apply to any complete lattice.

```
Exercise: relation between sup and inf
inf S = sup{X|X\subseteqY for all Y S S}
Proof:
Let T={X|X\subseteqY for all Y\inS}
inf S\subseteqY\mathrm{ for all }Y\inS\mathrm{ (def. of inf)}
inf S\inT (def. of T)
inf S\subseteq sup T (def. of sup)
X\subseteqY for all }X\inT\mathrm{ and }Y\inS\mathrm{ (def. of T)
sup}T\subseteqY\mathrm{ for all }Y\inS\mathrm{ (def. of sup)
sup T\subseteqinfS (def. of inf)
inf S = sup T (symmetry)
```


f-closed and f-dense sets

Monotone function $f: \wp(U) \rightarrow \wp(U)$

For all $X, Y \in \wp(U), X \subseteq Y$ implies $f(X) \subseteq f(Y)$

- $X \in \wp_{\wp}(U)$ is f-closed iff $f(X) \subseteq X$
- $X \in \wp(U)$ is f-dense (or f-justified, or f-consistent) iff $X \subseteq f(X)$
- $X \in \wp(U)$ is a fixed point of f iff $f(X)=X$
X fixed point of f iff X both f-closed and f-dense

Examples

If $f: \wp(\mathbb{N}) \rightarrow \wp(\mathbb{N})$ and $f(X)=\{0\} \cup\{x+2 \mid x \in X\}$ then

- \mathbb{N} is f-closed, but not f-dense
- \emptyset is f-dense, but not f-closed
- $\{2 x \mid x \in \mathbb{N}\}$ is a fixed point of f (which is unique in this particular case)

Tarski-Knaster theorem (1)

Lemma

Let $f: \wp(U) \rightarrow \wp(U)$ be monotone
(1) $\sup \{X \mid X f$-dense $\}$ is f-dense
(2) $\inf \{X \mid X f$-closed $\}$ is f-closed

Proof of lemma

(c) Let $Y=\sup \{X \mid X \subseteq f(X)\}$
for all X f-dense, $X \subseteq Y$ (def. of sup)
for all $X f$-dense, $f(X) \subseteq f(Y)$ (f monotone)
for all $X f$-dense, $X \subseteq f(X) \subseteq f(Y)$ (def. of f-dense)
for all $X f$-dense, $X \subseteq f(Y)$ (transitivity)
$Y \subseteq f(Y)$ (def. of sup)
Y is f-dense (def. f-dense)
(2) Obtained from 1 by duality (replacing sup with inf and \subseteq with \supseteq)

Tarski-Knaster theorem (2)

Claim

Let $f: \wp(U) \rightarrow \wp(U)$ be monotone
(1) $f(\sup \{X \mid X f$-dense $\})=\sup \{X \mid X f$-dense $\}$
(2) $f(\inf \{X \mid X f$-closed $\})=\inf \{X \mid X f$-closed $\}$

Proof of theorem

(1) Let $Y=\sup \{X \mid X \subseteq f(X)\}$
$Y \subseteq f(Y)$ (previous lemma) $\quad f(Y) \subseteq f(f(Y))$ (f monotone)
$f(Y) f$-dense (def. f-dense) $\quad f(Y) \subseteq Y$ (def. sup)
$f(Y)=Y$ (anti-symmetry)
(2) Obtained from 1 by duality

Greatest and least fixed points

Since X fixed point of f implies X both f-closed and f-dense

- $\sup \{X \mid X f$-dense $\}$ greatest fixed point of f (denoted by gfp f)
- $\inf \{X \mid X f$-closed $\}$ least fixed point of f (denoted by lfp f)

Kleene fixed point theorem (1)

How can lfp f and gfp f be constructed?
Continuous function $f: \wp(U) \rightarrow \wp(U)$

- f preserves sup and inf: for all $S \subseteq \wp(U)$

$$
\begin{aligned}
& f(\sup S)=\sup \{f(X) \mid X \in S\} \\
& f(\inf S)=\inf \{f(X) \mid X \in S\}
\end{aligned}
$$

Property

Continuous functions are always monotone. $X \subseteq Y$ implies $\sup \{X, Y\}=Y$ implies $f(Y)=\sup \{f(X), f(Y)\}$ implies $f(X) \subseteq f(Y)$

Iterated applications of f
$f^{0}(X)=X$
$f^{n+1}(X)=f\left(f^{n}(X)\right)$ for all $n \in \mathbb{N}$

Kleene fixed point theorem (2)

Claim

Let $f: \wp(U) \rightarrow \wp(U)$ be continuous.
(1) Ifp $f=\sup \left\{f^{n}(\emptyset) \mid n \in \mathbb{N}\right\}$
(2) $\operatorname{gfp} f=\inf \left\{f^{n}(U) \mid n \in \mathbb{N}\right\}$

Proof

(1) $f\left(\sup \left\{f^{n}(\emptyset) \mid n \in \mathbb{N}\right\}\right)=\sup \left\{f^{n+1}(\emptyset) \mid n \in \mathbb{N}\right\}(f$ continuous)
$\sup \left\{f^{n+1}(\emptyset) \mid n \in \mathbb{N}\right\}=\sup \left\{f^{n}(\emptyset) \mid n \in \mathbb{N}\right\}\left(f^{0}(\emptyset)=\emptyset\right.$, def. of sup)
Ifp $f \subseteq \sup \left\{f^{n}(\emptyset) \mid n \in \mathbb{N}\right\}$ (def. of Ifp f)
$f^{0}(\emptyset) \subseteq \operatorname{lfp} f\left(f^{0}(\emptyset)=\emptyset\right)$
$f^{n}(\emptyset) \subseteq \operatorname{lfp} f$ implies $f^{n+1}(\emptyset) \subseteq \operatorname{lfp} f(f$ is monotone, def. of Ifp f)
$f^{n}(\emptyset) \subseteq \operatorname{lfp} f$ for all $n \in \mathbb{N}$ (induction over n)
$\sup \left\{f^{n}(\emptyset) \mid n \in \mathbb{N}\right\} \subseteq \operatorname{lfp} f$ (def. of sup)
Ifp $f=\sup \left\{f^{n}(\emptyset) \mid n \in \mathbb{N}\right\}$ (symmetry)
(2) Obtained from 1 by duality

Kleene fixed point theorem with weaker assumption

Ascending and descending chains

- if $f: \wp(U) \rightarrow \wp(U)$ is monotone, then by induction over n :
$f^{0}(\emptyset) \subseteq f^{1}(\emptyset) \subseteq \ldots f^{n}(\emptyset) \subseteq f^{n+1}(\emptyset) \subseteq \ldots$ ascending chain
$f^{0}(U) \supseteq f^{1}(U) \supseteq \ldots f^{n}(U) \supseteq f^{n+1}(U) \supseteq \ldots$ descending chain
- least fixed point
f monotone, f preserves sup of ascending chains
even weaker: f monotone, f preserves sup of ascending chain
$f^{0}(\emptyset) \subseteq \ldots \subseteq f^{n}(\emptyset) \subseteq$
- greatest fixed point
f monotone, f preserves inf of descending chains
even weaker: f monotone, f preserves inf of descending chain
$f^{0}(U) \supseteq \ldots \supseteq f^{n}(U) \supseteq$
- Remark: the underlying lattice does not need to be complete, it is only required to be bounded

Application of the Kleene theorem (1)

Example 1

$$
\begin{aligned}
& f_{1}: \wp(\mathbb{Q}) \rightarrow \gamma(\mathbb{Q})(\mathbb{Q} \text { is the set of rational numbers) } \\
& f_{1}(X)=\{0\} \cup\{x+1 \mid x \in X\}
\end{aligned}
$$

$f_{1}(\emptyset)=\{0\}$
$f_{1}^{2}(\emptyset)=\{0,1\}$
$f_{1}^{n}(\emptyset)=\{x \leq n-1 \mid x \in \mathbb{N}\}$ for all $n \geq 1$
$\operatorname{lfp} f_{1}=\sup \left\{f_{1}^{n}(\emptyset) \mid n \in \mathbb{N}\right\}=\mathbb{N}$
$f_{1}(\mathbb{Q})=\mathbb{Q}$
$f_{1}^{n}(\mathbb{Q})=\mathbb{Q}$
gfp $f_{1}=\mathbb{Q}$
Exercise: show that if $f_{1}: \wp(S) \rightarrow \wp(S)$, where S is the set of non negative rational numbers, then the fixed point is unique, and compute it.

Application of the Kleene theorem (2)

Example 2

Let $[0,1]$ be the closed interval of real numbers

$$
\begin{aligned}
& f_{2}: \beta([0,1]) \rightarrow \gamma([0,1]) \\
& f_{2}(X)=\{0\} \cup\left\{\left.\frac{X}{2} \right\rvert\, x \in X\right\} \cup\left\{\left.\frac{1+x}{2} \right\rvert\, x \in X\right\}
\end{aligned}
$$

$f_{2}(\emptyset)=\{0\}$
$f_{2}^{2}(\emptyset)=\left\{0, \frac{1}{2}\right\}$
$f_{2}^{n}(\emptyset)=\left\{\left.\sum_{i=1}^{i<n} \frac{b_{i}}{2^{\prime}} \right\rvert\, b_{i} \in\{0,1\}\right\}$
$\operatorname{lfp} f_{2}=\sup \left\{f_{2}^{n}(\emptyset) \mid n \in \mathbb{N}\right\}=\left\{\left.\sum_{i=1}^{i<n} \frac{b_{i}}{2^{i}} \right\rvert\, n \in \mathbb{N}, b_{i} \in\{0,1\}\right\}$
$f_{2}([0,1])=[0,1]$
$f_{2}^{n}([0,1])=[0,1]$
$\operatorname{gfp} f_{2}=\inf \left\{f_{2}^{n}([0,1]) \mid n \in \mathbb{N}\right\}=[0,1]$

Application of the Kleene theorem (3)

Example 3

$$
\begin{aligned}
& f_{3}: \wp(\mathbb{N}) \rightarrow \wp(\mathbb{N}) \\
& f_{3}(X)=\{x-x \mid x \in X, x>0\} \cup\{x+1 \mid x \in X, x>0\}
\end{aligned}
$$

$f_{3}(\emptyset)=\emptyset$
$f_{3}^{2}(\emptyset)=\emptyset$
$f_{3}^{n}(\emptyset)=\emptyset$
Ifp $f_{3}=\emptyset$
$f_{3}(\mathbb{N})=\{0\} \cup\{x \geq 2 \mid x \in \mathbb{N}\}$
$f_{3}^{2}(\mathbb{N})=\{0\} \cup\{x \geq 3 \mid x \in \mathbb{N}\}$
$f_{3}^{n}(\mathbb{N})=\{0\} \cup\{x \geq n+1 \mid x \in \mathbb{N}\}$
$\inf \left\{f_{3}^{n}(\mathbb{N}) \mid n \in \mathbb{N}\right\}=\{0\}$
but $f_{3}(\{0\})=\emptyset$, hence gfp $f_{3}=\emptyset$, and f_{3} does not preserve inf

Application of the Kleene theorem (4)

Remarks on the examples

- Ifp $f_{i} \subsetneq$ gfp f_{i} for $i=1,2$
- gfp f_{i} depends on the fixed universe For instance, in example 2 if $U=[0,1] \cap \mathbb{Q}$, then

$$
f_{2}(U)=U \text { and } g f p f_{2}=[0,1] \cap \mathbb{Q}
$$

