
Part 4
Functional programming in Haskell

(continued)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 1 / 25

Call-by-value versus call-by-name

Termination

inf :: Int
inf = 1 + inf --diverges with any strategy
Prelude> fst(0,inf)
0

fst uses call-by-name
if there is a reduction sequence which terminates, then call-by-name also
terminates and gives the same result
call-by-name is preferable to call-by-value for the purpose of ensuring
termination as often as possible

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 2 / 25

Call-by-value versus call-by-name

Number of reductions

square :: Int -> Int
square x = x*x
square (1+2)

with call-by-name 1+2 needs to be evaluated twice
Haskell lazy evaluation = call-by-name + sharing (pointers to arguments)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 3 / 25

In other words: functions are non-strict

strict functions need all their arguments to be evaluated

Prelude> let bot = bot in (\x -> 0) bot

0

Prelude> let x = 1/0 in (\y -> 15) x

15

advantage: computationally expensive values may be passed as arguments
intuition: read declarations as definitions rather than assignments

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 4 / 25

Infinite data structures
data constructors are non-strict too
this allows the definition of infinite data structures
ones :: [Int]
ones = 1 : ones

evaluation of ones diverges, but:

*Main> head ones
1

property of lazy evaluation: expressions are only evaluated as much as
required
numFrom n = n : numFrom(n+1)

squaresFrom n = map (ˆ2) (numFrom n)

take _ [] = []
take 0 _ = []
take n (x:xs) = x:take(n-1) xs

*Main> take 5 (squaresFrom 0)
[0,1,4,9,16]

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 5 / 25

Separating control from data

without (or with) lazy evaluation:

replicate :: Int -> a -> [a]
replicate 0 _ = []
replicate n x = x:replicate (n-1) x

modular solution

repeat :: a -> [a]
repeat x = xs where xs = x : xs
replicate n = (take n) . repeat

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 6 / 25

Care is required

Computations which require to examinate an infinite list diverge

filter (<=5) [1..]

But

*Main> takeWhile (<=5) [1..]
[1,2,3,4,5]

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 7 / 25

Sieve of Eratosthenes

primes :: [Int]
primes = sieve [2..]

where
sieve :: [Int] -> [Int]
-- filters by all primes starting from the head of the list
sieve (p:xs) = p : sieve [x | x <- xs, x ‘mod‘ p /= 0]

*Main> take 10 primes
[2,3,5,7,11,13,17,19,23,29]

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 8 / 25

Another example

Fibonacci numbers
fibs0 = 1
fibs1 = 1
fibsi+2 = fibsi + fibsi+1

zip (x:xs) (y:ys) = (x,y) :: zip xs ys
zip _ _ = []

fibs = 1: 1: [a+b | (a,b) <- zip fibs (tail fibs)]

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 9 / 25

Variant

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
zipWith _ _ _ = []

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 10 / 25

Two examples you will revisit in coProlog

increment [] = []
increment (x : l) = (x + 1) : increment l

allPositive [] = True
allPositive (x : l) = x > 0 && allPositive l

increment is defined for all (computable) lists, where in coLP it will be defined
only for regular (finite and infinite) lists
allPositive is only defined for finite lists and infinite (computable) lists with
(at least) one non positive element, whereas in coLP it will be defined for all
regular lists

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 11 / 25

User-defined types

data Bool = False | True

Bool is a type constructor, True and False are (data) constructors

data Colour = Red | Green | Blue | Indigo | Violet

data Point a = Point a a

(disjoint) union or sum types, polymorphic tuple type

the type constructor Point has type a -> a -> Point a, hence, e.g.:

Point 1 2 :: Point Integer
Point ’a’ ’b’ :: Point Char
Point True False :: Point Bool

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 12 / 25

Recursive types

data BTree a = Empty | Node (a, BTree a, BTree a)

*Main> :type Node
Node :: (a, BTree a, BTree a) -> BTree a

insert :: Ord a => a -> BTree a -> BTree a
insert a Empty = Node(a, Empty, Empty)
insert a n@(Node(b,l,r)) =
if (a<b) then Node(b, insert a l, r)
else if (a>b) then Node(b,l, insert a r)
else n

consBTree :: Ord a => [a] -> BTree a
consBTree = itlist (\t -> \a -> insert a t) Empty

inorder Empty = []
inorder (Node(a,l,r)) = (inorder l)++[a]++(inorder r)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 13 / 25

Type classes

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 14 / 25

Overloading

*Main> 1+2
3

*Main> 1.0 + 2.0
3.0

The idea that + can be applied to any numeric type can be made explicit in its
type by a class constraint (context) of the form C a with a type variable

(+) :: (Num a) => a -> a -> a

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 15 / 25

(+) :: (Num a) => a -> a -> a

for any instantiation of a which is an instance of the class Num of the
numeric types, the function (+) has type a -> a -> a

a type which contains class constraints is an overloaded type
a function with an overloaded type is an overloaded function, e.g., (-),
(*), abs, . . .
numbers themselves are overloaded:

3 :: (Num t) => t

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 16 / 25

Classes

Class declaration

class MyEq a where
eq :: a -> a -> Bool --overloaded functions called methods
neq :: a -> a -> Bool
neq x y = not (eq x y)
eq x y = not (neq x y)

Instance declaration

instance MyEq Bool where
eq True True = True
eq False False = True
eq _ _ = False

warning + exception, or even divergence, if we omit some definition

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 17 / 25

Basic classes: equality types

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x==y)

basic types are instances, list and tuple types are instances provided that
component types are
it may be derived for any datatype whose component types are also instances
function types are not instances
minimal complete definition: either == or /=

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 18 / 25

Example

isin :: (Eq a) => a -> [a] -> Bool
isin _ [] = False
isin x (y:ys) = x==y || isin x ys

type of isin should be a -> [a] -> Bool

but, we do not expect equality to be defined for all types
moreover, we expect the definition of equality to be different for each type
that is, == is an overloaded function
otherwise we should use a different name for every type

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 19 / 25

Subclasses

Classes can be extended to form new classes

class Eq a => Ord a where
...

class constraint on a class declaration
meaning: we have to make a type instance of Eq before we can make it
instance of Ord
we can assume == in function bodies in the class declaration or in an instance
declaration

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 20 / 25

Instance declaration for parametric types

instance (Eq a) => Eq (BTree a) where
Empty == Empty = True
Node a l1 r1 == Node b l2 r2 = a==b && l1==l2 && r1==r2
_ == _ = False

class constraint on an instance declaration
meaning: requirements on the arguments of the type constructor
:info MyTypeClass

works also for types, type constructors, functions

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 21 / 25

Basic classes: (totally) ordered types

class Eq a => Ord a where
...
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a

basic types are instances, list and tuple types are instances provided that
component types are
it may be derived for any datatype whose component types are also instances

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 22 / 25

Basic classes
Showable and readable types

show :: Show a => a -> String

read :: Read a => String -> a

to use read we may need an explicit type annotation

*Main> read "True" :: Bool
True

*Main> not (read "True")
False

Enumeration and bounded types

succ :: (Enum a) => a -> a
pred :: (Enum a) => a -> a
...
minBound :: (Bounded a) => a
maxBound :: (Bounded a) => a

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 23 / 25

Basic classes

Numeric types

class (Eq a, Show a) => Num a where
...
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
abs :: a -> a
signum :: a -> a

Integral types

div :: (Integral a) => a -> a -> a
mod :::: (Integral a) => a -> a -> a

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 24 / 25

Derived instances

facility to automatically making new types instances of classes Eq, Ord, Enum,
Bounded, Show, and Read

data Bool = False | True deriving (Eq, Ord, Show, Read)

in case of constructors with arguments their types must be instances of the
derived classes

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 25 / 25

	Functional programming II

