
Declarative Programming and (Co)Induction

Davide Ancona and Elena Zucca

University of Genova

PhD Course, DIBRIS, June 23-27, 2014

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 1 / 25

Course description

Induction and conduction: different ways to interprete recursive definitions
Self-contained introduction to functional and logic programming
(languages Haskell and Prolog)
Semantics and type system of programming languages
Organized in two modules:

1 10 hours: basis for the second
Induction, small step and big step semantics, lambda calculus, inductive
type system, soundness
Functional programming in Haskell

2 10 hours: induction and coinduction, lowest and greatest fixed points,
abstract and operational semantics of Prolog and coProlog
Programming in Prolog and coProlog

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 2 / 25

First module

1 [Monday 10.30-13] Induction: inductive definitions and proofs by
induction

2 [Monday 14.30-17] Functional programming in Haskell + Lab: simple
programs in Haskell

3 [Wednesday 10.30-13] Small step and big step semantics, lambda
calculus, type system, soundness

4 [Wednesday 14.30-17] Lab: programs in Haskell

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 3 / 25

Part I
Induction

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 4 / 25

Induction

What is induction useful for?
definition of sets whose elements can be generated in a finite number of
steps:

I natural numbers, finite lists, finite trees
I relations and functions over such sets

proving properties by the induction principle

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 5 / 25

Simple examples

Mathematical style
The set of even numbers is the least set s.t. (or: the set inductively
defined by)

I 0 is an even number
I if n is an even number, then n + 2 is an even number

Recursive function definitions in programming languages
f x = if x == 0 then 0 else f (x-1) + 1

Syntax of programming languages

t ::= true | false | if t then t1 else t2 | succ t
| pred t | 0 | iszero t

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 6 / 25

Inference systems

U universe

a rule is a pair
Pr
c

, with Pr ⊆ U set of premises, c ∈ U consequence

an inference system Φ is a set of rules

Φ is finitary if, for all
Pr
c
∈ Φ, Pr is finite

X ⊆ U is closed w.r.t.
Pr
c

iff Pr ⊆ X implies c ∈ X

X is Φ-closed (closed w.r.t. Φ) iff it is closed w.r.t all rules in Φ

the set I(Φ) inductively defined by Φ is the intersection of all the Φ-closed
sets
it is easy to see that I(Φ) is Φ-closed, hence we can equivalently say the
least Φ-closed set
U is always Φ-closed hence I(Φ) is well-defined
given Φ, we can take as universe the set of consequence elements,
hence it is not necessary to fix U

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 7 / 25

Inductive definitions

an inductive definition is any finite description, in some meta-language, of
an inference system Φ, hence of I(Φ)

typically consisting of a set of meta-rules of the form
pre
ce

cond

pre, ce, cond are expressions with meta-variables
each meta-rule represents a (possibly infinite) set of rules, one for each
assignment of values to the meta-variables satisfiyng cond
meta-rules with empty set of premises are the basis, others are the
inductive step of the inductive definition
however, there are many other styles for giving inductive definitions ...

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 8 / 25

Example: mathematical style

The set of even numbers is the least set s.t. (or: the set inductively
defined by)

0 is an even number
if n is an even number, then n + 2 is an even number

corresponds to the following (meta-)rules, where n ranges over N:

0
n

n + 2
closed sets: {n | n even}, {n | n even or n ≥ k} for some k ∈ N

non closed sets: e.g., ∅

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 9 / 25

Variants

n
n + 2

empty set

10
n + 1

n
0..10

0
n

n + 2
{n | n even}

1
N

it is easy to see that I(Φ) 6= ∅ only if there is some rule with empty set of
premises

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 10 / 25

Recursive function definitions in programming
languages

f x = if x == 0 then 0 else f (x-1) + 1

corresponds to the following (meta-)rules, where x , r range over Z:

(0,0)

(x − 1, r)

(x , r + 1)
x 6= 0

(some) closed sets: all the partial identity functions defined from some
x ≤ 0, the total identity function, ...
exercise: show that I(Φ) = {(x , x) | x ≥ 0}

I I(Φ) ⊆ {(x , x) | x ≥ 0} is proved showing that {(x , x) | x ≥ 0} is closed
I {(x , x) | x ≥ 0} ⊆ I(Φ) by arithmetic induction

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 11 / 25

Example: syntax of programming languages

T ::= true | false | if T then T else T
| 0 | succ T | pred T | iszero T

corresponds to the following (meta-)rules:

true false

t t1 t2
if t then t1 else t2

0
t

succ t
t

pred t
t

iszero t

context free grammars correspond to a special class of inductive
definitions where premises are distinct metavariables

t ::= true | false | if t then t1 else t2
| 0 | succ t | pred t | iszero t

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 12 / 25

An alternative view

Definition (Signature)
A signature Σ is a family of operators indexed over natural numbers. If
op ∈ Σn, then we say that op has arity n and write op/n

Definition (Terms over a signature)
Given a signature Σ, the set of terms over Σ or Σ-terms is inductively defined
by:
for each operator op with arity n, if t1, . . . , tn are terms, then op(t1, . . . , tn) is a
term

for simplicity we consider the uni-sorted case
a context-free grammar implicitly defines a signature and, for each
operator, a concrete syntax for writing op(t1, . . . , tn), e.g.,
if t then t1 else t2
the signature is the abstract syntax

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 13 / 25

Induction principle
Φ inference system, I(Φ) ⊆ U , P : U → {T ,F}

Theorem

If for all
Pr
c
∈ Φ

(?) (P(d) = T for all d ∈ Pr) implies P(c) = T

then P(d) = T for all d ∈ I(Φ)

Proof.
Set C = {d |P(d) = T}
The condition (?) can be equivalently written: Pr ⊆ C implies c ∈ C.
That is, C is Φ-closed, hence I(Φ) ⊆ C.

Remark
If Pr = ∅, then (?) is equivalent to P(c) = T

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 14 / 25

Particular case: arithmetic induction

Theorem
P predicate on natural numbers s.t.

P(0) = T
for all n ∈ N, P(n) = T implies P(n + 1) = T

Then P(n) = T for all n ∈ N.

Proof.
N can be seen as the set inductively defined by:

0 ∈ N

if n ∈ N then n + 1 ∈ N.

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 15 / 25

Particular case: complete arithmetic induction

Theorem
P predicate on natural numbers s.t.

P(0) = T
for all n ∈ N, P(m) = T for all m < n implies P(n) = T

Then P(n) = T for all n ∈ N.

Proof.
N can be seen as the set inductively defined by:

0 ∈ N

if m ∈ N for all m < n then n ∈ N.

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 16 / 25

Particular case: structural induction

Theorem
Σ signature, P predicate on Σ-terms s.t.

for all op ∈ Σn, P(t1) = T , . . . ,P(tn) = T implies P(op(t1, . . . , tn)) = T

Then P(t) = T for all t term over Σ.

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 17 / 25

Multiple inference definitions (sketch)
all previous definitions and results can be generalized to families
a family of sets A indexed over S (S-family of sets) is a function which
associates to each s ∈ S a set As

also written {As}s∈S

in a multiple inference system a rule has shape
{Pr s}s∈S

c : s
I(Φ) is an S-family of sets
examples: definitions of mutually recursive functions, general form of
syntax (many syntactic categories = indexes, many-sorted signature)
multiple induction principle: Φ multiple inference system, I(Φ) ⊆ U ,
{Ps}s∈S family of predicates s.t. Ps : Us → {T ,F}

If for all
{Pr s}s∈S

c : s
∈ Φ

(?) (Ps(d) = T ∀d ∈ Pr s,∀s ∈ S) implies Ps(c) = T

then Ps(d) = T ∀d ∈ I(Φ),∀s ∈ S

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 18 / 25

Inductive definitions as fixed points

given f : A→ A and a ∈ A, a is a fixed point of f iff f (a) = a
given f : ℘(U)→ ℘(U) and X ⊆ U , X is a pre-fixed point of f (X is
f -closed) iff f (X) ⊆ X
X is a least pre-fixed point of f iff f (Y) ⊆ Y implies X ⊆ Y
equivalently, X is the intersection of pre-fixed points
f is monotone if X ⊆ Y implies f (X) ⊆ f (Y)

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 19 / 25

Theorem
Given Φ an inference system with universe U , set fΦ : ℘(U)→ ℘(U) defined by:

for each X ⊆ U , fΦ(X) = {c | Pr
c
∈ Φ,Pr ⊆ X}

Then, fΦ is monotone and I(Φ) is the least pre-fixed point of fΦ(X).

Theorem
Given f : ℘(U)→ ℘(U) monotone, set Φf defined by:

Φf = {Pr
c
| Pr ⊆ U , c ∈ f (Pr)}

Then, I(Φf) is the least pre-fixed point of f .

Ancona, Zucca (Univ. of Genova) Declarative Programming and (Co)Induction DIBRIS, June 23-27, 2014 20 / 25

	Functional programming

